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Abstract. A key challenge in microbial phylogenomics is that micro-
bial gene families are often affected by extensive horizontal gene transfer
(HGT). As a result, most existing methods for microbial phylogenomics
can only make use of a small subset of the gene families present in the
microbial genomes under consideration, potentially biasing their results
and affecting their accuracy. One well-known approach for truly genome-
scale phylogenomics is gene tree parsimony (GTP), which takes as input
a collection of gene trees and finds a species tree that most parsimo-
niously reconciles with the input gene trees. While GTP based methods
are widely used for phylogenomic studies of non-microbial species, their
underlying reconciliation models are not designed to handle HGT and,
therefore, they cannot be meaningfully applied to microbes. No GTP
based methods have yet been developed for microbial phylogenomics.
In this work, we (i) design and implement the first GTP based approach,
PhyloGTP, for microbial phylogenomics, (ii) use an extensive simulation
study to systematically assess the accuracies of PhyloGTP and two other
recently developed methods, SpeciesRax and ASTRAL-Pro-2, under a
range of different conditions, and (iii) analyze two real microbial datasets
with different characteristics. We find that PhyloGTP and SpeciesRax
are more accurate than ASTRAL-Pro-2 across nearly all tested condi-
tions, that PhyloGTP and SpeciesRax have similar accuracies overall,
but there are conditions under which PhyloGTP consistently outper-
forms SpeciesRax, and that both PhyloGTP and SpeciesRax can some-
times yield incorrect, misleading phylogenies on complex real datasets.
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1 Introduction

The accurate inference of phylogenetic relationships between different microbes
is an important problem in evolutionary biology. A key difficulty in estimating
such phylogenies is the presence of extensive horizontal gene transfer (HGT) in
microbial evolutionary histories. This can result in markedly different evolution-
ary histories for different gene families, obfuscating the underlying species-level
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or strain-level phylogeny. As a result, the traditional approach for reconstruct-
ing microbial phylogenies is to use only “well-behaved" gene families resistant to
HGT. This includes the use of small-subunit ribosomal RNA genes (e.g., [48,65])
or of a concatenated alignment of a few core genes from the genomes of interest
(e.g., [14,35,41]). Both these approaches, however, are known to be error-prone.
For instance, ribosomal RNA genes are known to engage in horizontal trans-
fer [24, 66, 68] and to yield histories that are inconsistent with those inferred
using other core genes [17, 18, 29, 30]. Furthermore, ribosomal RNA genes often
cannot be used when studying closely related species due to excessive sequence
similarity. Similarly, concatenation based approaches, such as the widely used
multilocus sequence analysis (MLSA) technique [23], essentially ignore horizon-
tal gene transfer and aggregate the phylogenetic signal from several gene families
with potentially distinct evolutionary histories [22,44]. Indeed, the tree resulting
from the concatenation might represent neither the organismal phylogeny nor
any of the genes included in the concatenation [36].

To overcome these limitations, several genome-scale methods have also been
proposed for microbial phylogeny inference. These include methods such as Phylo
SI that are based on gene order information [54, 55], supertree-based methods
such as SPR supertrees [64] and MRP [8, 68] that allow for the use of multi-
ple orthologous gene families, and methods based on average nucleotide identity
(ANI) of genomes [26,28,33]. Such genome-scale methods are inherently prefer-
able to methods that base phylogeny reconstruction on only a single gene or a
small set of concatenated genes [44]. However, while these above methods all
represent useful approaches for microbial phylogenomics, they are either tar-
geted at analyzing closely related strains or species (gene order and ANI based
methods), or are limited to using single-copy gene families or orthologous groups
and do not model key evolutionary events affecting microbial gene family evo-
lution (supertree based methods). Recently, truly genome-scale approaches for
microbial phylogenomics, capable of using thousands of complete (multi-copy)
gene families, have also been developed. The two most prominent such meth-
ods are ASTRAL-Pro 2 [67] and SpeciesRax [46], both of which take as input a
collection of unrooted gene family trees, where each gene family tree may con-
tain zero, one, or multiple genes from any species/strain under consideration.
ASTRAL-Pro 2 is based on quartets and seeks a species tree that maximizes
a quartet based score [67]. While ASTRAL-Pro 2 does not directly model any
specific evolutionary processes, such as HGT or gene duplication, responsible
for gene tree discordance, it can handle complete (multi-copy) gene families and
previous research suggests that it’s quartet based approach should be robust
to HGT [16]. SpeciesRax uses an explicit Duplication-Transfer-Loss model of
gene family evolution in microbes and seeks a species tree that maximizes the
reconciliation likelihood of observing the input gene trees under that model [46].

In this work, we propose a new approach for microbial phylogenomics and
systematically compare its performance with ASTRAL-Pro 2 and SpeciesRax us-
ing simulated and real datasets. The new approach, called PhyloGTP, is based
on gene tree parsimony (GTP), a well-known technique for phylogenomic in-
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ference. GTP provides a framework for inferring species trees from a collection
of gene trees impacted by complex evolutionary processes. Specifically, GTP
seeks a species tree that most parsimoniously reconciles all the input gene trees
under an appropriately chosen model of gene-tree/species-tree reconciliation. Fa-
cilitated by effective software implementations [13, 62], GTP is widely used for
phylogenomic studies of multicellular eukaryotes (e.g., [12,27,40,42,43]), where
the most appropriate reconciliation model is often the duplication-loss (DL)
model [25]. To apply GTP to microbes, one must account for HGT by using
the more complex Duplication-Transfer-Loss (DTL) reconciliation model. De-
spite its promise, GTP has not yet been implemented with DTL reconciliation
and has therefore not yet been applied to microbial genomes. PhyloGTP ad-
dresses this gap, allowing for the first systematic assessment of GTP’s potential
for microbial phylogenomics. We note that PhyloGTP is conceptually similar to
SpeciesRax since both methods are based on explicit DTL models of microbial
gene family evolution, and both methods seek species trees that best reconcile
the input gene trees under their DTL models. However, there are two key dif-
ferences between PhyloGTP and SpeciesRax: First, PhyloGTP uses a standard,
widely-used parsimony-based DTL model [3, 60] while SpeciesRax uses a differ-
ent, probabilistic DTL model [46]. And second, PhyloGTP and SpeciesRax use
different heuristic search strategies to find their best species tree estimates, as
we discuss later.

We use an extensive simulation study to evaluate the accuracies of PhyloGTP,
ASTRAL-Pro 2, and SpeciesRax, focusing especially on the impact of number of
input gene trees, DTL rates, and input gene tree error rates. We find that Phy-
loGTP and SpeciesRax are more accurate than ASTRAL-Pro-2 across nearly all
tested conditions, that PhyloGTP often substantially outperforms SpeciesRax
when the number of input gene trees is small or when DTL rates are high, and
that SpeciesRax generally outperforms PhyloGTP on datasets with high gene
tree error but low DTL rates. We also used PhyloGTP and SpeciesRax to analyze
two real microbial datasets; a more complex 174-taxon Archaeal dataset exhibit-
ing extreme divergence and compositional biases, and a less complex dataset of
44 Frankiales exhibiting low divergence. While both PhyloGTP and SpeciesRax
perform well on these real datasets, they do result in a few clearly incorrect
placements for the Archaeal dataset. This suggests that both PhyloGTP and
SpeciesRax are potentially susceptible to biases present in complex datasets.

While our prototype implementation of PhyloGTP is considerably slower
than SpeciesRax, our results establish GTP as a promising approach for mi-
crobial phylogenomics, and show that PhyloGTP is capable of yielding more
accurate microbial species trees for many datasets. At the same time, our re-
sults show that even reconciliation-based phylogenomic approaches like Phy-
loGTP and SpeciesRax may not produce accurate results for certain complex
microbial datasets and that their results should be interpreted with caution. An
open-source prototype implementation of PhyloGTP is available from https:
//github.com/samsonweiner/PhyloGTP.
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2 Basic Definitions and Preliminaries

Let T be a leaf-labeled tree with node, edge, and leaf sets denoted by V (T ), E(T ),
and Le(T ). If T is rooted, we denote it’s root by rt(T ). For any node v ∈ V (T ),
where T is a rooted tree, the (maximal) subtree rooted at v is denoted Tv. Unless
otherwise specified, all trees are binary and unrooted.

We use the term species tree for the tree depicting evolutionary relationships
for the taxa (e.g., species, strains, etc.) under consideration. Given a gene family
from the taxa under consideration, a gene tree is a tree that depicts the evolu-
tionary relationships of the genes in the gene family. We assume that each leaf
in a gene tree is labeled with the taxon from which that leaf (i.e., gene sequence)
was taken. Note that a gene tree may have zero, one, or multiple genes from the
same taxon.

Throughout this work, we assume that the taxon set under consideration is
denoted by Ω and that the species tree, denoted S, depicts the evolutionary
relationships for taxa in Ω, i.e., Le(S) = Ω. We use G to denote a collection of
gene trees {G1, ..., Gk}, where each Gi, 1 ≤ i ≤ k, describes the evolutionary
history of a different gene family present in the taxon set Ω. We also implicitly
assume that Le(S) = ∪k

i=1 Le(Gi).

DTL reconciliation. The DTL reconciliation model allows for the reconcilia-
tion of a given rooted gene tree with a given rooted species tree by postulating
gene duplication, HGT, and gene loss events. DTL reconciliation is often per-
formed in a maximum parsimony framework, in which each event type has an
associated (user-defined) cost and the objective is to find a reconciliation of
minimum total cost [3,15,19,58–60]. In the current work, we specifically use the
DTL reconciliation model first developed in [3,60], for which optimal (most par-
simonious) DTL reconciliations can be computed in O(mn) time, where m and
n denote the number of leaves in the gene tree and species tree being reconciled,
respectively. Importantly, an unrooted gene tree can be reconciled with a rooted
species tree within the same O(mn) time complexity [3].

In the following, we denote the event costs for gene duplications, HGTs, and
gene losses by Pd, Pt, and Pl, respectively. Given a gene tree G ∈ G, species tree
S, and event costs Pd, Pt, and Pl, we denote by RPd,Pt,Pl

(G,S) the reconciliation
cost of an optimal DTL reconciliation of G and S under the event costs Pd, Pt,
and Pl.

Definition 1 (Total DTL Reconciliation Cost). Given a species tree S, a
collection of gene trees G = {G1, ..., Gk}, and event costs Pd, Pt, and Pl, the
total DTL reconciliation cost of G with S is the sum of the DTL reconciliation
costs of each G ∈ G with S, i.e.,

∑k
i=1 RPd,Pt,Pl

(Gi, S).

GTP-based Problem formulation. To compute accurate genome-scale mi-
crobial phylogenies, we use a gene tree parsimony formulation based on DTL
reconciliation. Specifically, given as input a collection of hundreds or thousands
of gene trees, we seek a species tree that minimizes the total DTL reconciliation
cost against the collection of input gene trees. More formally,

4

PREPRINT



Problem 1 (Most Parsimonious Species Tree (MPST)) Given a collec-
tion of gene trees G and event costs Pd, Pt, and Pl, find a species tree S that
minimizes the total DTL reconciliation cost with G.

The MPST problem can be shown to be NP-hard, W[2]-hard, and inap-
proximable to within log factor through a reduction from the NP-hard gene
duplication problem [6, 38]. The gene duplication problem is a special case of
MPST problem defined in this manuscript and seeks a species tree minimizing
just the total number of gene duplications. Details of the reduction are straight-
forward and omitted for brevity. Given the NP-hardness of the MPST problem,
PhyloGTP uses a local search heuristic to solve the problem, as described in the
next section.

3 Description of PhyloGTP

The local search heuristic implemented in PhyloGTP is similar to those use
for many other NP-hard phylogeny inference problems, including those used for
other popular variants of gene tree parsimony [13, 39, 49, 62]. The local search
heuristic starts with an initial candidate rooted species tree and iteratively im-
proves it using local search. Specifically, in each local search iteration, the heuris-
tic finds a minimum reconciliation cost tree in the “local neighborhood" of the
current species tree. The best tree found in that local neighborhood then becomes
the starting point for the next local search iteration. The heuristic terminates
when a lower cost tree cannot be found in the local neighborhood of the current
species tree. Next, we describe how PhyloGTP computes the initial candidate
species tree and how it defines the local neighborhood for each subsequent local
search iteration.

Construction of initial candidate species tree. If an estimated user-defined
initial species tree is unavailable, PhyloGTP uses a stepwise taxon-addition al-
gorithm to compute a reasonable initial species tree for the local search. The
stepwise taxon-addition algorithm works by starting from a two-taxon rooted
species tree and iteratively placing taxa, one at a time, onto the species tree
topology along the branch that minimizes the total DTL reconciliation cost. In
our implementation, the taxa are added in order of decreasing coverage, where
the coverage of taxon s is the number of gene trees that include a gene from s.
At each iteration, each gene tree is pruned to reflect only the taxa present in the
current (incomplete) species tree. Once all taxa have been added, the resulting
rooted species tree is used as the starting species tree for the subsequent local
search. We found that using this stepwise taxon-addition algorithm results in
an average reduction of 93% in the number of local search iterations until con-
vergence when compared to using a random species tree topology as the initial
starting tree (detailed results not shown).

Description of local search iterations. PhyloGTP implements a constrained
(rooted) subtree prune and regraft (SPR) [9] based local search using the initial
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tree as a starting point. SPR is the most commonly used tree edit operation
for phylogenetic local search and induces a local neighborhood of Θ(n2) trees,
where n is the number of leaves in the species tree [56]. Rather than always
evaluating all trees in the full SPR neighborhood at each iteration, PhyloGTP
first considers only the restricted set of trees obtained by regrafting a single
pruned subtree Sv, rooted at a some node v ∈ V (S)/ rt(S), onto each possible
edge in the current species tree S. It finds the lowest cost tree S′ within that
restricted neighborhood and, if S′ has lower cost than S, then S is replaced by S′

and PhyloGTP proceeds to the next local search iteration. If no improvement was
found in the restricted neighborhood using Sv, then a new node u ̸= v ∈ V (S) is
chosen and the restricted local search step is repeated using the pruned subtree
Su. Thus, PhyloGTP is initially constrained to a small subset of the full SPR
search space, but will incrementally expand the set of trees under consideration
until an improvement is found, or until the full SPR neighborhood is explored. In
the latter case, if no improvement is found then the search is determined to have
converged. Note that the order in which subtrees are considered for pruning is
randomized at the beginning of each local search iteration. In addition, if there
are multiple species trees with minimum reconciliation cost within a restricted
neighborhood, then the new species tree S′ is selected uniformly at random
among them.

Observe that we use a search strategy based on restricted SPR local neighbor-
hoods instead of exploring the full SPR local neighborhood at each local search
iteration. This is motivated by the underlying computational complexity of the
computation. If n denotes the number of taxa in the analysis and k the number
of input gene trees then, assuming most of the k gene trees have Θ(n) leaves, the
time complexity of naively evaluating all candidate species trees in a single SPR
local neighborhood becomes Θ(n2)×Θ(n2)×Θ(k) which is Θ(k ·n4). This does
not scale well with increasing n. Furthermore, many local search iterations have
to be performed during a single execution of the heuristic. By using a search
strategy based on restricted SPR local neighborhoods, the number of candidate
species trees evaluated during most local search iterations reduces to Θ(n), re-
ducing the time complexity of most local search iterations to a more reasonable
Θ(k · n3). Importantly, this approach retains the key advantage of using a full
SPR-based search since the heuristic search only terminates if a better tree is
not found in the full SPR local neighborhood. Previous work on a simpler GTP
problem suggests that heuristics based on restricted SPR local neighborhoods
perform as well as those based on using full SPR neighborhoods during each
local search iteration [63].

DTL event costs assignment. By default, PhyloGTP uses event costs of 2,
3, and 1 for gene duplications, HGTs, and gene losses, respectively (i.e., Pd = 2,
Pt = 3, and Pl = 1). These are standard costs used in the DTL reconciliation
literature and have been previously observed to work well in practice for micro-
bial datasets [5, 7, 15]. All experimental results reported in this manuscript are
based on these default event costs for PhyloGTP.
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Parallelization. PhyloGTP implements parallelization to further improve its
scalability and enable application to large-scale datasets. The parallelization
strategy works by dynamically distributing the computation associated with
obtaining the reconciliation costs of candidate species trees in the local search
neighborhood across a user-defined number of cores. Thus, when using c cores,
the running time of the heuristic is reduced by roughly a factor of c.

4 Results

We use both simulated and real biological datasets to carefully assess the recon-
struction accuracy of PhyloGTP. We also compare the accuracy of PhyloGTP
against two recently developed state-of-the-art methods: SpeciesRax [46] and
ASTRAL-Pro 2 [67]. SpeciesRax first uses a novel distance-based method, min-
iNJ, which estimates leaf-leaf distances based on the input gene trees, to con-
struct an initial species tree using Neighbor Joining, and then executes a light-
weight local search heuristic to optimize the initial species tree based on a proba-
bilistic DTL reconciliation model. ASTRAL-Pro 2 first constructs a constrained
search space of candidate species trees based on greedily optimizing a quartet
similarity score, and then uses dynamic programming to find the best tree within
that constrained search space. Both SpeciesRax and ASTRAL-Pro 2 were run
using default parameter settings as provided in their respective manuals.

4.1 Results on simulated data

Dataset description. We used simulated datasets with known ground truth
species trees to assess the impact of three key parameters on reconstruction
accuracy: Number of input gene trees, rates of gene duplication, HGT, and gene
loss (or DTL rates for short), and estimation error in the input gene trees.

Simulated datasets were created using a three-step pipeline: (1) simulation
of a ground-truth species tree and corresponding true gene trees with varying
DTL rates, (2) simulation of sequence alignments of different lengths for each
gene tree, and (3) reconstruction of estimated gene trees from the sequence
alignments. In the first step, we used SaGePhy [34] to first simulate ground-
truth species trees, each with exactly 50 leaves (taxa) and a height (root to tip
distance) of 1, under a probabilistic birth-death framework. We then used these
species trees to simulate multiple gene trees under the probabilistic duplication-
transfer-loss model implemented in SaGePhy. This resulted in 9 different datasets
of simulated true gene trees, each corresponding to a different number of input
gene trees (10, 100, or 1000), and a different DTL rate (low, medium, or high;
see Table 1). Each dataset comprised of 10 replicates. The chosen DTL rates
are based on the relative rates and frequencies of gene duplication and HGT
events in real microbial datasets [7]. In each case, the gene loss rate is assigned
to be equal to the gene duplication rate plus the additive HGT rate, so as to
balance the number of gene gains with the number of gene losses (Table 1).
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Basic statistics on these simulated true gene trees, including average sizes and
numbers of gene duplication and HGT events, are provided in Table 2.

In the second step, we used AliSim [37] to simulate DNA sequence alignments
along each simulated gene tree under the General Time-Reversible (GTR) model
(using default AliSim GTR model settings) with three different sequence lengths:
400, 100, and 50 bp. In the third and final step, maximum-likelihood gene trees
were inferred using IQ-TREE 2 [45] from the simulated sequence alignments un-
der the Jukes-Cantor (JC) model. We use the simpler JC model when estimating
gene trees, instead of the GTR model used to generate the sequences, since this
better captures the biases of applying substitution models to real sequences.
Thus, from each dataset of true gene trees, we derive 3 additional datasets of es-
timated gene trees corresponding to the three sequence lengths. The purpose of
the second and third steps above is to generate error-prone gene trees that reflect
the reconstruction/estimation error present in real gene trees. We found that the
estimated gene trees had average normalized Robinson-Foulds distances [53] (de-
fined below) of 0.08, 0.22, and 0.35 for sequence lengths 400, 100, and 50 bp,
respectively, to the corresponding true gene trees.

Table 1. Key parameters used in the simulation study. The table lists the
main parameters and their values explored in the simulation study. All 36 (= 3×3×4)
combinations of these three parameters were evaluated at 10 replicates each. DTL rates
are specified in the form (d, t, l), where d is the gene duplication rate, t is the HGT
rate (split evenly between additive and replacing HGTs), and l is the gene loss rate.
The number of species was fixed at 50 for these datasets.

Parameter Values

Number of gene trees 10, 100, 1000

DTL rates

low = (0.3, 0.6, 0.6)

med = (0.6, 0.12, 0.12)

high = (0.12, 0.24, 0.24)

Sequence length (nucleotides) 400, 100, 50, and true gene trees

Table 1 summarises the specific ranges of parameter values we explored for
the number of gene trees, DTL rates, and sequence lengths. We evaluated all
combinations of these parameter values, resulting in a total of 36 simulated
datasets, with each dataset comprising of 10 replicates created using that specific
assignment of parameter values. We also created some additional datasets with
10 and 100 taxa for the runtime analysis.

Evaluating reconstruction accuracy. To evaluate the species tree reconstruc-
tion accuracies of the different methods, we compare the species tree estimated by
each method with the corresponding ground truth species tree. To perform this
comparison we utilize the widely used (unrooted) normalized Robinson-Foulds
distance (NRFD) [53] between the reconstructed and ground truth species trees.
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Table 2. Basic statistics for simulated gene trees. Average number of leaves,
duplications, and HGTs, and losses in the simulated low, medium, and high DTL
gene trees. For each DTL rate, the number of losses is roughly equal to the number of
duplications plus half the number of HGTs. Results were averaged over all 10 replicates
of the 100 gene tree datasets.

DTL rate Leaves Duplications HGTs

Low 53.618 3.408 6.586

Med 55.121 6.15 11.125

High 59.718 10.077 18.37

For any reconstructed species tree, the NRFD reports the fraction of non-trivial
splits in that species tree that do not appear in the corresponding ground truth
species tree. For ease of interpretation, we report results in terms of percentage
accuracy, defined to be the percentage of non-trivial splits in the reconstructed
species tree that also appear in the ground truth species tree. Thus, percent
accuracy is simply (1−NRFD)× 100. Thus, for example, a percentage accuracy
of 87% is equivalent to an NRFD of 0.13.

Accuracy on true (error-free) gene trees. We first evaluate the accuracy
of the species tree reconstruction methods when given true (error-free) gene
trees as input (effectively skipping steps 2 and 3 of the simulation pipeline).
While error-free gene trees do not capture the complexities of real data, this
analysis helps us understand how the different methods perform in a controlled,
ideal setting. Figure 1 shows the results for low, medium, and high DTL rates
with varying numbers of gene trees for 50-taxon datasets. Unsurprisingly, we
find that both DTL rates and number of input gene trees are highly impactful
parameters. The performance of all three methods worsens as DTL rates increase,
and improves as the numbers of input gene trees increase. Both PhyloGTP and
SpeciesRax substantially outperform ASTRAL-Pro 2, especially on the medium
and high DTL datasets. In particular, we find that ASTRAL-Pro 2 is highly
susceptible to high DTL rates, and that it also shows poor performance when
the number of input gene tree is small. Interestingly, the accuracy of Astral-
pro 2 improves rapidly as the number of gene trees increases, with the method
performing equivalently to PhyloGTP and SpeciesRax on the low and medium
DTL datasets when the input consists of 1000 gene trees. Between PhyloGTP
and SpeciesRax, we find that PhyloGTP shows higher accuracy when the number
of gene trees is small (100 or fewer), particularly when DTL rates are medium or
high. For the remaining datasets, both PhyloGTP and SpeciesRax show nearly
identical accuracies.

Accuracy on estimated (erroneous) gene trees. We next assess the ac-
curacy of the reconstructed species trees when the input consists of estimated
(erroneous) gene trees. Figure 2 shows the results of this analysis for all 27 com-
binations of number of input gene trees, DTL rates, and sequence lengths (or
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Fig. 1. Accuracy on true gene trees. Tree reconstruction accuracies are shown for
PhyloGTP, SpeciesRax, and ASTRAL-Pro 2 when applied to error-free or ‘true’ gene
trees. Results are shown for increasing numbers of input gene trees (10, 100, and 1000)
and for low, medium, and high DTL rates. The number of taxa (i.e., number of leaves
in the species tree) is fixed at 50. Higher percentages (y-axis) imply greater accuracy.

gene tree estimation error rates). As expected, the accuracy of all three methods
is substantially affected by the quality of the estimated gene trees, with higher
accuracies achieved using gene trees estimated from longer sequences. We also
find that an increased number of input gene trees can partly make up for er-
ror in the input gene trees. For example, compared to using true input gene
trees (Figure 1), PhyloGTP shows a 5− 21% reduction in accuracy with 10 es-
timated gene trees but only a 1− 4% reduction with 1000 estimated gene trees,
depending on sequence length. Similar trends are observed with SpeciesRax and
ASTRAL-Pro2. Overall, we find that PhyloGTP and SpeciesRax still outper-
form ASTRAL-Pro-2 across most datasets and that ASTRAL-Pro 2 continues
to be more susceptible to high DTL rates than the other methods. As before,
the performance of ASTRAL-Pro 2 improves rapidly with increasing number
of input gene trees, even sometimes outperforming SpeciesRax and PhyloGTP
when DTL rates are low or medium. This suggests that ASTRAL-Pro 2 may be
appropriate for microbial phylogenomics on datasets with lots of gene trees and
relatively low prevalence of HGT. Comparing PhyloGTP with SpeciesRax, we
find that both methods have similar performance overall, with PhyloGTP and
SpeciesRax showing average percent accuracies of 88.36% and 86.87%, respec-
tively, when averaged across all 27 datasets. However, PhyloGTP consistently
outperforms SpeciesRax on datasets with high DTL rates (showing better accu-
racy, sometimes substantially better, in all by one high DTL dataset), as well
as on datasets with 10 input gene trees. We also find that SpeciesRax tends to
outperform PhyloGTP on datasets with high gene tree error and low DTL rates.
This suggests that PhyloGTP may be especially useful for analyzing datasets
with high levels of HGT or with a small number of gene trees.

Runtimes. We compare the runtimes of the three methods when varying the
number of taxa (10, 50, and 100) over low, medium, and high DTL rates. In
addition, we also evaluate the impact of the number of input gene trees (100
and 1000) using the 50-taxon dataset. These runtimes are shown in Table 3.
All methods have parallel implementations and were allocated 12 cores on a 2.8
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Fig. 2. Accuracy on estimated gene trees. Tree reconstruction accuracies are
shown for PhyloGTP, SpeciesRax, and ASTRAL-Pro 2 when applied to estimated
gene trees. Results are shown for all 27 combinations of number of input gene trees, se-
quence lengths (shorter sequence lengths imply greater gene tree estimation error), and
DTL rates. The first, second, and third rows correspond to datasets with 10, 100, and
1000 gene families, respectively, and the first, second, and third columns correspond
to 400, 100, and 50 base pair sequence lengths, respectively. The number of taxa (i.e.,
number of leaves in the species tree) is fixed at 50. Higher percentages imply greater
accuracy.

GHz × 4 Intel i7 processor with 16 GB of RAM. We find that ASTRAL-Pro 2
is, by far, the fastest method, requiring only about 5 seconds on the 50-taxon
1000 gene tree datasets and less than 10 seconds on the 100-taxon 100 gene
tree datasets. SpeciesRax is also extremely fast, requiring only about 60 seconds
and 50 seconds, respectively, on those datasets. PhyloGTP is much slower than
the other two methods, requiring about 3.5 hours and 10.5 hours on those same
datasets. This is expected since this prototype implementation of PhyloGTP
has a time complexity that is quartic (n4) in the number of species. Unlike
PhyloGTP, ASTRAL-Pro 2 does not rely on local search heuristics, instead
using highly efficient algorithms for computing quartet similarity scores and for
finding an optimal species tree within a constrained search space. SpeciesRax
does implement a local search heuristic and uses DTL reconciliation, but it’s
heuristic is light-weight and searches over a smaller search space. SpeciesRax

11

PREPRINT



Table 3. Impact of number of taxa and gene trees on running time. Runtimes
in seconds are shown for the three methods for datasets with 10, 50, and 100 taxa and
low medium, and high rates of DTL. For the 10- and 100-taxon datasets, the number
of input gene trees is 100. For 50-taxon datasets, results are shown for both 100 and
1000 gene trees. The runtimes are based on simulated true input gene trees and are
averaged over 10 replicate runs. Each method was allocated 12 cores on a 2.8 GHz ×
4 Intel i7 processor with 16 GB of RAM.

Dataset size DTL rate SpeciesRax ASTRAL-Pro 2 PhyloGTP

10 taxa,

100 gene trees

low 1.45 0.08 4.02

med 1.36 0.08 4.45

high 1.35 0.09 4.82

50 taxa,

100 gene trees

low 5.69 1.11 1,299.56

med 6.25 1.14 1,374.92

high 8.9 1.43 2,015.03

50 taxa,

1000 gene trees

low 50.34 5.38 10,011.79

med 52.33 5.29 11,433.19

high 59.95 5.55 13,137.93

100 taxa,

100 gene trees

low 22.05 3.61 19,871.48

med 28.90 4.84 32,606.87

high 47.19 7.15 38,259.04

also uses a fast distance-based approach to compute a good initial species tree,
which greatly reduces the number of local search steps needed. It may be possible
to use some of these techniques to speed up PhyloGTP as well, without sacrificing
accuracy.

4.2 Results on biological data

We assembled two previously used biological datasets of different size, compo-
sition, and complexity to assess the accuracy and consistency of species trees
inferred by PhyloGTP as compared to SpeciesRax and traditional non-DTL
cognizant methods such as MLSA and tANI [26] (Table 4). To examine the
effect of extreme divergence and genome complexity variation on species tree in-
ference, we used a dataset composed of 176 Archaea, which was drawn from [21].
The Archaea included in the dataset span 2-3 kingdoms (or superphylums), and
radically different lifestyles (from extremophiles inhabiting Antarctic lakes to
mammal gut constituents). Because the pan-genome of an entire domain would
be immeasurably large and computationally infeasible to accurately infer, we
have reduced the number of gene families in this dataset to 282 core genes,
which are shared by all members. This also allows direct comparison of the Phy-
loGTP species tree to previously calculated phylogenies in [21] which used the
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same loci. It should be noted that the 282 gene families used in the PhyloGTP
analysis have been expanded to include all homologs (paralogs, xenologs, etc.)
found in each genome, while only orthologs were used in [21].

To examine the impact of low sequence divergence on PhyloGTP species tree
inference, we used a dataset of 44 Frankiales genomes, drawn from [26]. These
included taxa are all closely related members of the order Frankiales, and as such
the entire pan-genome (8,862 gene families with at least 4 sequences) was used
for inference in PhyloGTP and SpeciesRax. The order Frankiales are composed
of nitrogen-fixing symbionts of pioneer flora [61], and although they demonstrate
variation in GC content and genome size these factors were previously shown to
not bias phylogenetic inference [26].

Table 4. Summary of the two biological datasets.

Dataset Number of
gene

families

Potential biases Previous methods
used to infer
species tree

176 Archaea
(domain)

282 Extreme divergence, long
branch attraction,
compositional bias

tANI, MLSA, single
gene

44 Frankiales
(order)

8,862 Low divergence, contamination,
genome size difference

tANI, MLSA

Archaeal dataset. A myriad of controversies surround the phylogeny of Ar-
chaea. These controversies include the monophyly of the DPANN superphy-
lum [2, 10, 21, 47, 52], the placement of extreme halophiles [1, 21, 47, 57], and the
root of the Archaea [51]. These differences in phylogenetic inference are driven
by many factors including, but not limited to compositional bias, long branch
attraction, extremely small genomes, numerous HGT events, and biased sam-
pling of metagenome-assembled genomes. Thus, it is interesting to evaluate the
performance of PhyloGTP in the face of these factors.

Using 282 unrooted input gene trees, both PhyloGTP and SpeciesRax in-
ferred Archaeal species trees with small inaccuracies with respect to commonly
accepted placements of groups in previous analyses. These inaccuracies should
be interpreted in the context that for several Archaeal clades (mostly halophiles)
there is no consistent, consensus position that is universally accepted amongst
Archaeaologists. For example, the monophyly of the DPANN superphylum is
considered by some to be an artifact (driven by long branch attraction or bi-
ased genome sampling) [2,21,69]. Both species trees (Figure 3) recover a mono-
phyletic DPANN superphylum and successfully resolve the TACK clade. Phy-
loGTP successfully recovers a monophyletic Euryarchaea kingdom (Fig 3a),
whereas SpeciesRax has misplaced the Methanomada and Thermococcales (both
euryarchaeotes) onto the branches leading to the TACK group. One major point
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Group Memberships

Fig. 3. Archaeal species tree reconstructions. Individual taxa on both trees have
been collapsed into clades and are colored corresponding to higher level classifica-
tions (clades with the same color are part of the same class or phylum). The legend
shows previously reported Kingdom memberships of these collapsed clades, and also
the halophiles which may group together as a result of compositional bias. Part a) Un-
rooted Archaeal tree inferred by PhyloGTP; to be read as a cladogram since PhyloGTP
does not infer branch lenghs. Part b) Unrooted Archaeal tree inferred by SpeciesRax.
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of disagreement between the two methods is the placement of the Haloarchaea.
SpeciesRax correctly recovers the Haloarchaea within the euryarchaeota (Fig-
ure 3b), while this group has moved inside the DPANN superphylum, to be the
sister group of the Nanohaloarchaea, in the PhyloGTP phylogeny (Figure 3a). In
addition, the position of the Methanonatronarchaeia (another halophile) in both
trees is recovered as later branching euryarchaeota (Figure 3), in contrast to pre-
vious studies which report them as basal to the Methanotecta + Archaeoglobales
superclass [1,21]. Incorrect placements of the Nanohaloarchaea, Haloarchaea and
Methanonatronarchaeia are often attributed to compositional bias [21]. These
halophiles prefer acidic amino acid residues (such as aspartate and glutamate),
on account of their survival strategies in hypersaline environments, and these
acidified proteomes attract the placement of these groups together in phyloge-
netic reconstructions.

Overall, these results demonstrate that PhyloGTP can produce a mostly ac-
curate Archaeal tree, even in the face of the many biases present in the dataset
(Table 4). At the same time, these results also show that PhyloGTP and Species-
Rax are both susceptible to the presence of problematic groups (such as the
extreme halophiles) and other biases in complex datasets, potentially limiting
their accuracy in some cases.

Frankiales dataset. In the case of the Frankiales, reconstructions with Phy-
loGTP and SpeciesRax yield identical relationships between the major clades
(Figure 4). This suggest that both programs have comparable efficacy when the
dataset analyzed is less complex and less divergent. Since this analysis used the
entire pan-genome of the Frankiales, a possible concern is that small gene fam-
ilies (such as those that are only found in 4-8 genomes) may negatively impact
these reconciliation based methods. To assess the impact of small gene families
on species tree reconstruction, a subset of 1,702 genes families present in at least
20 genomes and in the smallest Frankia genome (Frankia sp. DG2) was used for
inference using PhyloGTP and SpeciesRax. The trees produced from this subset
recovered the same topologies for major clades as those in the full complement,
indicating that the smaller gene families are not a problem for either method.

In comparison to previous trees inferred on the same genomes using previous
non-DTL methods, such as those shown in [26], there are a few rearrangements of
early branching clades in the backbone of the Frankiales. In phylogenies inferred
using tANI and MLSA sequence methods, Group 1 (Figure 4) is basal to the rest
of the Frankiales. In the PhyloGTP and SpeciesRax trees, Group 3 is basal to the
other Frankiales, with Group 1 as a later branching basal group. In addition to
the movement of these clades, Frankia sp. NRRLB16219 and Frankia sp. CgIS1
have swapped positions, where Frankia sp. CgIS1 has moved from Group 2 to
Group 5. These rearrangements may be attributed to the additional genomic
data used to reconstruct the PhyloGTP and SpeciesRax trees. Only 24 loci were
used in [26], and the inclusion of thousands of additional gene families have
painted a slightly different picture of evolution throughout the Frankiales. This
suggests that truly genome-scale methods like PhyloGTP could lead to more
accurate phylogenomic inference on real datasets compared to other methods.
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Fig. 4. Cladograms of the Frankiales. Clades on both trees are categorized and
sorted based on the group designations described in [26]. Note that both trees show
identical relationships among the labeled clades, but not necessarily within those clades.
Part a) Frankiales cladogram inferred by PhyloGTP. Part b) Cladogram inferred by
SpeciesRax.
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Comparison of total DTL reconciliation costs. We also compared the to-
tal DTL reconciliation costs of the PhyloGTP and SpeciesRax species trees for
these biological datasets. We find that, for both datasets, PhyloGTP species
trees show considerably lower reconciliation costs. Specifically, for the Archaeal
dataset, PhyloGTP and SpeciesRax species trees have total DTL reconciliation
costs of 58,291 and 59,140, respectively. For the Frankiales dataset, these recon-
ciliation costs are 148,898 and 156,376, respectively. These numbers show that,
unlike PhyloGTP, speciesRax does not necessarily minimize the total DTL rec-
onciliation cost. This is likely due to the different objective function used by
SpeciesRax.

Details of dataset assembly. Annotated genomes of 176 Archaea used in [21]
were collected. The 282 core gene loci described in [21] were used as amino acid
query sequences to search every collected genome, using blastp [11] with default
parameters (-evalue was changed to 1e-10). All significant sequence for every loci
across all genomes were collected (provided they met a length threshold of 50%
in reference to the average gene family sequence size to filter partial sequences).
Each gene family was then aligned using mafft-linsi [32] with default parameters
and used as the basis for gene tree inference in IQ-Tree 2 [45], where the best
substitution model for each gene family was determined using Bayesian Inference
Criterion [31].

Annotated proteomes of the 44 Frankiales used in [26] were collected. Protein
sequences were clustered into gene families and using the OrthoFinder2.4 pipeline
[20] with default parameters (the search algorithm was changed to blast). Briefly,
all-vs-all blastp (evalue of 1e-3) was used to find the best hits between input
species. The set of query-matches were then clustered into gene families using
the MCL algorithm, and the subsequent gene families were aligned using mafft-
linsi with default parameters. Resulting alignments were used to create gene
trees using FastTree [50] using the JTT model and default parameters.

5 Discussion and Conclusion

In this work, we introduced PhyloGTP, a new method for microbial species tree
inference using GTP. PhyloGTP searches for the most parsimonious species tree
under the DTL reconciliation model, making it the first GTP-based method suit-
able for microbial phylogenomics. Our simulation study shows that PhyloGTP
can substantially outperform SpeciesRax when the number of input gene trees is
small or when DTL rates are high. However, PhyloGTP is not consistently bet-
ter than SpeciesRax and SpeciesRax tends to outperform PhyloGTP on datasets
with high gene tree error but low DTL rates. We also find that both PhyloGTP
and SpeciesRax almost always outperform ASTRAL-Pro 2, a highly scalable but
HGT-naive method. Our results on the two biological datasets suggest that Phy-
loGTP works very well on real datasets overall, but also that both PhyloGTP
and SpeciesRax can sometimes be misled by problematic taxa and compositional
and other biases present in complex datasets.
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While our experiments with PhyloGTP have yielded promising results, the
prototype implementation of PhyloGTP is far slower, and hence far less scal-
able, than SpeciesRax or ASTRAL-Pro 2. However, we expect future work on
improved algorithms and heuristics for GTP under DTL reconciliation to result
in software implementations that are much faster and more accurate than the
current PhyloGTP prototype. There are several possible directions for future
research. First, PhyloGTP will likely benefit from differential weighting of the
input gene trees. For example, the current implementation of PhyloGTP does
not take into account the level of inference uncertainty in the input gene trees.
Such measures of uncertainty are often readily available, such as bootstrap sup-
port values, and they could be used to distinguish between more reliable and
less reliable gene trees. A simple multiplicative weight between 0 and 1 could
then be assigned to each gene tree, reflecting confidence in that gene tree. It may
also make sense to normalize reconciliation costs based on gene tree size and to
down-weight gene trees exhibiting very high reconciliation costs. Exploring and
carefully evaluating such weighting schemes is a promising direction for future
research.

Second, PhyloGTP could be substantially sped up using alternative tree
search strategies or improved algorithms for reconciliation cost computations.
For example, it may be possible to constrain the search space of candidate
species trees without sacrificing accuracy, or design algorithms to quickly ap-
proximate the total DTL reconciliation cost of candidate species trees to guide
the local search heuristic. Third, given our findings on the Archaeal dataset,
it would be useful to characterize the performance of PhyloGTP and Species-
Rax more carefully using more nuanced simulated datasets exhibiting some of
the complications and biases observed in complex biological datasets. Finally, it
may also be possible to devise asymptotically faster algorithms to compute the
lowest DTL reconciliation cost tree within an entire SPR local neighborhood, as
has been previously accomplished for simpler reconciliation models [4].
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