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Abstract. Existing computational approaches for studying gene family evolu-

tion generally do not account for domain rearrangement within gene families.

However, it is well known that protein domain architectures often differ between

genes belonging to the same gene family. In particular, domain shuffling can lead

to out-of-order domains which, unless explicitly accounted for, can significantly

impact even the most fundamental of tasks such as multiple sequence alignment

and phylogeny inference.

In this work, we make progress towards addressing this important but often over-

looked problem. Specifically, we (i) demonstrate the impact of protein domain

shuffling and rearrangement on multiple sequence alignment and gene tree recon-

struction accuracy, (ii) propose two new computational methods for correcting

gene sequences and alignments for improved gene tree reconstruction accuracy

and evaluate them using realistically simulated datasets, and (iii) assess the po-

tential impact of our new methods and of two existing approaches, MDAT and

ProDA, in practice by applying them to biological gene families. We find that the

methods work very well on simulated data but that performance of all methods is

mixed, and often complementary, on real biological data, with different methods

helping improve different subsets of gene families.

1 Introduction

Protein domains, or just domains for short, are independently folding structural and/or

functional units that recur across multiple protein coding gene families [4]. Domains

can be viewed as recurrent building blocks of proteins and are known to play an im-

portant role in the function and evolution of many gene families [20, 28, 29]. In fact,

it is estimated that the majority of protein coding genes in eukaryotes and almost half

of protein coding genes in prokaryotes contain at least one domain [10, 12]. Known

domain sequences can be clustered into different domain families and many thousands

of distinct domain families have already been identified [5].

As a gene evolves, one or more of its domains can get duplicated or be lost, and

new domains can be acquired from other genes. The resulting gain and loss of domains

during gene family evolution can lead to genes from the same gene family having dif-

ferent domain contents and architectures (i.e., sequential orderings). This is illustrated

in Figure 1. Such changes in domain content and architecture through domain shuffling
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Fig. 1. Different domain architectures within a gene family. The four depicted fly

proteins belong the same gene family but show different domain architectures (order-

ings). In particular, the order of “srcr” and “ldl recept a” domains appears to be inverted

between D. erecta and D. ananassae. Also observe that the gene from D. sechellia does

not have the “cbm2” domain. Note that the figure does not depict the exact location or

length of any domain and only shows domain orderings.

are believed to be key drivers of protein evolution and proteome complexity [6]. As a

result, mechanisms of domain shuffling and domain architecture evolution have been

extensively studied in the literature [2, 7, 8, 11, 17, 25].

A frequent outcome of domain content and architecture changes within gene fam-

ilies is that genes belonging to the same gene family can have incompatible domain

orders. For example, a gene in some gene family may have two domains A and B

(from different domain families) in the order 〈A,B〉, while a different gene from the

same gene family may have those domains in the order 〈B,A〉. This could occur, for

example, if there is a tandem duplication of domains A and B, resulting in domain

order 〈A,B,A,B〉, followed by losses of the first and last domains, resulting in the

order 〈B,A〉. Such domain rearrangements, unless explicitly accounted for, can signif-

icantly impact even the most fundamental of tasks such as multiple sequence alignment

and phylogeny inference. Yet, traditional approaches for computing multiple sequence

alignments (MSAs) and reconstructing gene trees do not account for domain rearrange-

ment within gene families. This is because traditional MSA algorithms perform a linear

alignment of the given sequences, assuming that any variation in gene sequences is a

result of point mutations or indels [1]. Domain rearrangements can violate this assump-

tion, directly affecting the quality of the resulting MSA and of any gene trees inferred

using that MSA.

Previous work. To the best of our knowledge, only three multiple sequence alignment

methods, ABA [23], ProDA [22], and MDAT [13], currently exist that explicitly take

domain contents and architectures into account. ABA represents a sequence alignment

as a directed (possibly cyclic) graph [23], which allows for domain architecture changes

and rearrangements to be detected and taken into account when analyzing evolution-

ary relationships between the aligned sequences. However, to our knowledge, ABA
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does not compute a global multiple sequence alignment, as needed for gene tree re-

construction, and the ABA software is no longer available. ABA was also shown to

have poor residue level accuracy when applied to gene families with rearranged, out-

of-order domains [22]. ProDA [22] takes as input a set of unaligned sequences, uses

local alignment and clustering to identify all homologous regions appearing in one or

more sequences, and outputs a collection of local multiple alignments for the identified

homologous regions. ProDA was shown to work well at detecting conserved domain

boundaries and clustering domain segments, and at recovering known domain orga-

nizations [22]. ProDA can detect local protein homology and construct local multiple

alignments, but it cannot be directly used to obtain a global alignment when the in-

put gene sequences contain multiple domain copies from any domain family. The more

recent method MDAT [13] seeks to compute more accurate MSAs by computing mul-

tiple domain alignments and restricting the global alignment such that domains from

different families cannot align to each other. A limitation of MDAT is that it respects

the linear arrangement of domains within each input sequence and cannot correct for

rearranged, out-of-order domains. Importantly, despite the development of these previ-

ous methods, the impact of domain rearrangement on MSAs and subsequent gene tree

reconstruction has not been systematically evaluated and remains largely unknown.

Our contribution. In this work, we propose two new, easy-to-apply computational

methods to mitigate the impact of rearranged, out-of-order domains on gene tree re-

construction. We also carefully assess the impact of the new and previous methods on

real biological data. Specifically, we first use simulated gene families, modeled after

real fly gene families, to assess the impact of domain shuffling and rearrangement on

MSA and gene tree reconstruction accuracy. Second, we propose two new computa-

tional approaches, referred to as Door-S and Door-A (where Door is short for “domain

organizer”), for correcting gene sequences and alignments for improved gene tree re-

construction accuracy. The key idea behind our two methods is to identify known do-

mains within the input gene sequences and then reorganize the domains to remove any

domain ordering incompatibilities between the different gene sequences. This allows for

an improved MSA inference for that gene family, leading to improved gene tree recon-

struction. Essentially, our methods leverage the fact that standard phylogeny inference

algorithms assume that sites evolve independently of each other and treat each column

(site) of an MSA independently. Thus, homologous sites within gene sequences can be

rearranged (together) without affecting phylogeny inference. Third, we demonstrate the

impact of applying Door-S and Door-A on realistically simulated gene families. And

finally, we carefully evaluate the applicability and impact of Door-S, Door-A, and the

previous methods MDAT and ProDA, on biological gene families from 12 fly species.

We find that the new methods result in an almost 70% average reduction in gene tree

reconstruction error for the simulated gene families. However, we find that the perfor-

mance of all methods is mixed when applied to the biological gene families, with the

best performing methods resulting in significantly improved gene tree reconstruction for

about a quarter of the gene families but showing either comparable or worse reconstruc-

tion accuracy for the other gene families. Interestingly, the performance of the different

methods on biological data is often complementary, with different methods helping im-
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prove different subsets of gene families. Scripts implementing Door-S and Door-A are

freely available from https://github.com/suz11001/Door/tree/main.

2 Description of Methods

2.1 Proposed Methods: Door-S and Door-A

Both Door-S and Door-A seek to identify and reorganize domains within each input

gene sequence to enable and improve the alignment of homologous regions in the final

global MSA. The main steps in the Door-S and Door-A methods are as follows:

1. Identification of domain families present within the gene family.

2. Identification of domain sequence boundaries and non-domain regions within each

gene sequence.

3. Ordering of non-domain regions and domain families for each gene.

4. Ordering of domains copies from same domain family within each gene.

5. Computation of final global MSA.

Door-S and Door-A differ only in their implementation of Step 5 above. Specifically,

Door-S uses a traditional multiple sequence aligner, such as MUSCLE [9], to globally

align the reorganised gene sequences, while Door-A separately aligns the different do-

main families and non-domain regions and concatenates these alignments to create a

global concatenated alignment for the gene family. Figure 2 illustrates the shared and

individual steps of Door-S and Door-A. We elaborate on these steps below.

1. Identification of domain families present: Domain families present within gene

sequences can be identified using protein domain databases or tools such as Pfam [19],

SMART [26], PANTHER [18] or InterPro [21]. For our biological dataset from 12 fly

species, we used UniProt gene IDs to determine their protein domain constituents from

the Pfam A database.

2. Identification of domain sequence boundaries and non-domain regions: Domain

annotations are imperfect and the domain sequences found in PFAM or any other do-

main database may not be an exact match to the domain sequence present in the gene.

We therefore align each annotated domain sequence back to the gene and extract the

precise genic region where the annotated domain aligns. In case multiple annotated

domains from different domain families overlap in the genic space, we duplicate the

regions of alignment where the domains overlap. Once all the domain regions of the

gene have been identified, these domain regions are removed from the gene sequences

and are placed as domain sequences as part of their respective domain families.

3. Ordering of non-domain regions and domain families: The domain and non-

domain (genic) regions within each gene sequence of a gene family are ordered such

that the genic regions appear first, followed by the domain family sequences in a fixed

order. This ensures that the ordering of domain family sequences remains consistent

between all genes belonging to the same gene family. This is illustrated in the top half

of Figure 2.

4. Ordering of domain copies from same domain family: If a gene sequence con-

tains multiple domain copies from the same domain family then we place these copies
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Fig. 2. Overview of Door-S and Door-A. The key difference between the two meth-

ods is that Door-S first concatenates all genic (non-domain) and domain sequences in

a consistent order across all gene sequences and then performs global sequence align-

ment of the resulting, reordered gene sequences as the final step (see bottom left of

figure). In contrast, Door-A first separately aligns the genic sequences and sequences

from each domain family and concatenates the resulting alignments, introducing gaps

for sequences with domain losses, to obtain the final global alignment (see bottom right

of figure).

contiguously in the same order as in the original gene sequence. A different approach

was used for the simulated gene families since we did not explicitly simulate domain

orderings in the gene sequences; specifically, for each domain family, we choose a ref-

erence gene gref with the most number of domain copies of that domain family and

greedily align the domain copies in the other genes from that gene family to the most

similar domain copy in gref .

5. Computation of final global MSA. Door-S and Door-A take different approaches

for this final step, as illustrated in the bottom half of Figure 2. Door-S concatenates the

reordered genic and domain region sequences within each gene to create a reordered

version of each original gene sequence. These reordered gene sequences, all from the

same gene family, are then globally aligned using a standard global aligner. In this work,

we used MUSCLE v. 3.8.31 [9] with default parameters to compute all alignments.

Instead of first concatenating the reordered genic and domain regions and then aligning

the resulting concatenated sequences, Door-A first aligns the genic regions and each

domain family separately, and then concatenates the resulting alignments to obtain a
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final global alignment of the reordered gene sequences. As part of this process, to ensure

a well-formed final global alignment, gaps are artificially introduced if a domain family

is completely absent from a gene sequence.

2.2 Existing methods: MDAT and ProDA

We also evaluate the two related previous methods ProDA [22] and MDAT [13]. Even

though MDAT cannot correct for rearranged, out-of-order domains, it can be directly

used to compute a global sequence alignment for multi-domain gene families. MDAT

relies on protein domain annotations generated using a specific version (version 27) of

the Pfam domain database and uses this annotation to restrict the global alignment, en-

suring that domains belonging to different domain families cannot be aligned together.

ProDA takes as input a set of unaligned sequences and uses local alignment and

clustering to identify all homologous regions appearing in one or more input sequences.

It outputs a collection of local multiple alignments for the identified homologous re-

gions. However, ProDA does not compute a global sequence alignment and cannot be

directly used to compute one based on the output alignment blocks. For instance, some

sequence segments, or even entire genes, do not appear in any output alignment, and

each alignment block can contain multiple homologous regions from the same gene

sequence. Nonetheless, ProDA’s effectiveness at identifying regions of local homology

can be leveraged to identify and correct for out-of-order domains or other regions. Ac-

cordingly, to apply ProDA to this problem, we use a scheme similar to that used for

Door-A to compute global sequence alignments from ProDA’s output: First, we modify

each block of homologous sequences by identifying domain copies from the same gene

sequence and arrange them linearly according to their ordering in the gene sequence.

This step is similar to Step 3 of Door-S and Door-A. Second, we compute a sequence

alignment (using MUSCLE) for each modified block of homologous sequences (simi-

lar to Step 5 of Door-A). Third, we add back the genes not represented in the resulting

alignment by introducing gaps in the alignment for that gene. Finally, we concatenate

the alignment for each blocks of homologous sequences to obtain an overall global

alignment for the gene sequences of that gene family.

ProDA also has an input parameter which controls for the minimum size of a ho-

mologous sequence block. In our evaluation of ProDA, we used two settings for this

parameter; one in which the minimum block size is set to 50 amino acids (aa), and

another in which the parameter value is set to the length of the shortest Pfam domain

sequence found in that gene family. We refer to these two executions as ProDA 50 and

ProDA, respectively.

3 Dataset Description and Experimental Setup

3.1 Simulated dataset

We first used simulated gene family sequences, with known ground truth, to assess the

impact of domain rearrangements on gene tree reconstruction and demonstrate the im-

pact of Door-S and Door-A. To enhance the biological realism of this simulated dataset,
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we selected key parameter values, such as for gene length, average number of domain

families per gene famiy, average domain length, and average number of domain rear-

rangements, based on a real datset from 12 fly species (described later in this section).

Specifically, starting with a biological dataset of 2307 multi-domain gene families from

12 fly species (see Section 3.2), we first identified 198 gene families with plausible out-

of-order domains using the simple procedure described in Section 3.2. Essentially, this

procedure identifies those gene families which contain at least one pair of genes whose

domain orderings are incompatible with each other. For these 198 gene families, we

find a median genic (not counting domain sequences) length of 452 aa, median domain

sequence length of 78 aa, median of 3.6 unique domain families per gene family, and

median of 1 for the number of unique out-of-order domain-family pairs present. We

also estimated the probability of any given gene sequence having out-of-order domains.

This probability depended on gene family size y, and was estimated to be 0.45, 0.27,

0.24, 0.15, 0.34, and 0.22 for y ≤ 10 , 10 < y ≤ 25, 25 < y ≤ 50, 50 < y ≤ 75,

75 < y ≤ 100, and y > 100, respectively.

Simulating gene trees and domain trees. Based on these parameter estimates, we used

the phylogenetic simulation framework SaGePhy [14] to generate 100 gene families

and their corresponding domain families. First, we simulated 100 species trees with

SaGePhy using a birth-death model with birth and death rate of 5 and 2, respectively,

and height 1. A gene tree was then evolved inside each species tree under a duplication-

loss model with gene duplication and gene loss rates of 0.3 each. Finally, we evolved 3

domain trees inside each gene tree with domain duplication and domain loss rates of 0.3

each. This yielded gene families with similar domain characteristics as the biological

dataset.

Simulating sequence data. We then used SaGePhy to simulate protein sequences along

both the gene and the three domain trees under the LG amino acid substitution model

[15] and appended together (in a predetermined order) the genic and domain sequences

belonging to the same gene. Hence, each gene consists of a genic (non-domain) se-

quence and a variable number of domain sequences from one or more domain families.

Each genic sequence is 450 aa long and each domain sequence is 100 aa long, so that

each full gene sequence has length 450 aa or more depending on the number of domain

sequences present in it.

Introducing rearrangements.After creating these baseline sequences for each gene in

the gene family, we introduce domain rearrangement in a randomly chosen subset of

the gene sequences based on the probabilities previously estimated from the biologi-

cal dataset. We follow a conservative procedure for introducing domain rearrangements

where we only make one rearrangement (exchange the positions of a single pair of do-

mains) in each selected gene sequence. In most cases, we only exchange two neighbor-

ing domains. For example, if the simulated gene sequence shows the domain ordering

([A1, A2, A3], [B1, B2], [C1]), where A,B, and C represent the three domain families,

then, in most cases, we only exchange either A3 with B1 or B2 with C1, thereby creat-

ing exactly one pair of out-of-order domain sequences in that gene sequence. Based on

observations in the biological dataset, we also sometimes perform rearrangements so

as not to disrupt the tandem ordering of domain copies. For example, if the simulated
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gene sequence shows domain ordering ([A1, A2], [B1], [C1]), then we rearrange the

sequence to ([B1], [A1, A2], [C1]) with a small probability based on biological data.

3.2 Biological dataset

As our real biological dataset, we used the 12-flies dataset assembled by Li et al. [16] in

their study of protein domain evolution. This dataset consists of 7165 gene families in

which at least one gene has at least one Pfam A domain. Of these 7165 gene families,

2307 gene families contain domains from at least two domain families. Among these

2307 gene families, we identified 198 as having plausible out-of-order domains and our

experimental results are based on these 198 gene families.

The 198 gene families with plausible out-of-order domains were identified as fol-

lows: We first represent each gene sequence by its ordering of domains. For exam-

ple, a gene sequence consisting of 8 distinct domains from 4 different domain families

A,B,C and D would be represented as follows, based on the specific ordering of the 8

domain sequences: [(A),(A),(B),(B),(C),(D),(C),(B)]. For simplicity and to avoid pos-

sible overcounting of out-of-order domains, we then condense the above representation

by merging together contiguous domains from the same domain family. Thus, the rep-

resentation for the above gene would be condensed to [(A),(B),(C),(D),(C),(B)]. We

then consider the condensed representations of each pair of gene sequences from the

gene family and check if that pair of genes has incompatible domain orders. More pre-

cisely, we check if there exists a domain family pair {X,Y} such that this pair occurs

only in the order 〈X,Y 〉 in one of the gene sequences and only in the order 〈Y,X〉 in

the other gene sequence. If we find any pair of gene sequences to have incompatible

domain orders then we flag that gene family as plausibly having out of order domains.

3.3 Evaluation of results

The most commonly used accuracy metric for multiple sequence alignments is the sum-

of-pairs (SP) score. SP scores are computed by comparing every pair of amino acids

in an aligned column to assign an alignment quality score to that column, and then

summing up these scores across all columns in the alignment. The higher the total

score, the better the quality of the alignment. However, this scoring scheme is only

appropriate when the sequences being aligned are actually alignable. For sequences

with out-of-order domains, the SP score can yield misleading results and need not be

correlated with gene tree reconstruction accuracy. We will see a clear example of this

in the next section. Consequently, we assess the impact of out-of-order domains and of

the different correction methods based on reconstructed gene tree accuracy. We measure

gene tree accuracy by comparing each reconstructed gene tree against the corresponding

ground truth gene tree using the standard Robinson-Fould’s metric [24]. Specifically,

we count the number of splits present in only one of the two trees being compared (the

reconstructed vs the true gene tree). We refer to the resulting number as the RF-score,

with a lower RF-score implying greater gene tree reconstruction accuracy. Note that the

reported RF-scores count unique splits of both trees (i.e., we do not divide the computed

score by 2).
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Since ground truth gene trees are only available for the simulated dataset, gene tree

accuracy cannot be directly measured for the biological dataset. To overcome this chal-

lenge, we use the reconciliation cost (specifically the duplication-loss reconciliation

cost) of each reconstructed gene tree against the known 12-flies species tree as a proxy

for gene tree accuracy. We compute this reconciliation cost under a parsimony frame-

work [3] using a loss cost of 1 and a duplication cost of 2. We refer to the resulting cost

as the DL-score. In section 4.1, using the simulated datasets, we show that the DL-score

generally increases or decreases in line with the RF-score (i.e., greater gene tree error

results in a higher DL-score), thereby justifying its use as a proxy for the RF-score.

3.4 Gene tree reconstruction

For each simulated gene family, we reconstruct four gene trees based on the following

four gene family alignments: (i) an alignment (using MUSCLE [9]) of the simulated

baseline sequences with no domain rearrangement, (ii) an alignment (using MUSCLE)

of the rearranged gene sequences, (iii) the alignment produced by applying Door-S to

the rearranged sequences, (iv) and the alignment produced by applying Door-A to the

rearranged sequences. Thus, the first tree represents the baseline scenario when there is

no domain rearrangement in the gene sequences and captures baseline alignment and

gene tree reconstruction error. The second tree represents the scenario when domain

rearrangement is present but is not accounted for in the gene family alignment. The third

and fourth trees represent the scenarios when domain rearrangement is present and has

been corrected for using Door-S and Door-A, respectively. All simulated dataset gene

trees were reconstructed using RAxML v8.2.11 [27] with thorough search settings (-f a

-N 100) and under the same model (PROTGAMMAILG) used for the simulation.

For the biological dataset, we reconstruct six gene trees for each of the 198 gene

families. These six gene trees correspond to the original (uncorrected) MUSCLE align-

ment and the corrected alignments obtained by applying Door-S, Door-A, MDAT, ProDA,

and ProDA 50. All biological dataset gene trees were reconstructed using RAxML

v8.2.11 [27] with thorough search settings under the PROTGAMMAAUTO model.

4 Results

4.1 Simulated dataset results

Table 1 summarises our results for the simulated dataset. As the table shows, intro-

ducing domain rearrangements in the gene sequences leads to a dramatic worsening of

gene tree reconstruction accuracy, with the average RF-score increasing from 9 for the

baseline sequences without rearrangement to 43 for the aligned rearranged sequences.

The table also shows the drastic improvement in gene tree accuracy obtained after cor-

recting the rearranged sequences using Door-S and Door-A. Specifically, the RF-score

decreases from 43 to only 14 and 13, respectively, after Door-S and Door-A are ap-

plied. Overall, among the 100 simulated gene families in this dataset, Door-S resulted

in an improved RF-score for 95 gene families and Door-A for 97 gene families. These

results show that both Door-S and Door-A are highly effective at correcting MSAs for

improved gene tree reconstruction, with Door-A slightly outperforming Door-S.
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Table 1. Gene tree reconstruction accuracy using different alignment types for the sim-

ulated gene families. Accuracy is shown in terms of RF-scores, averaged across the 100

gene families in the simulated dataset. Corresponding average DL-scores and SP-scores

are also shown. Lower values are better for RF-score and DL-score, while higher val-

ues are better for SP-score. Observe that DL-scores are well-aligned with RF-scores, but

that SP-scores are not, with the Door-A corrected alignment showing the worst (lowest)

SP-score among all four alignment types.

Alignment type RF-score DL-score SP-score

Baseline sequences alignment (no rearrangement) 9 40 626

Rearranged sequences alignment 43 117 576

Door-S corrected alignment 14 51.25 635

Door-A corrected alignment 13 48 550

Relationship between RF-score and DL-score. Table 1 also shows average DL-scores

for the gene trees reconstructed using the four alignment types. As the table shows,

these DL-scores are highly correlated with corresponding RF-scores, increasing and

decreasing by similar degrees as the RF-scores. Overall, we observed that application

of Door-S and Door-A resulted in improved (decreased) DL-score in 95 of the 100

gene families. These observations justify the use of DL-score as a proxy for gene tree

reconstruction error for the biological dataset where true gene trees are unknown.

Inapplicability of SP-score. We also computed SP-scores for the Door-S and Door-A

alignments and compared them to SP-scores for the rearranged sequence alignments

(Table 1). Based on the drastic improvement in gene tree accuracy enabled by Door-S

and Door-A, one would expect the Door-S and Door-A alignments to show much better

(higher) SP-scores. While all Door-S alignments do show an improvement, we found

that only 11 of the 100 Door-A alignments had an improved SP-score compared to re-

arranged sequence alignments. In other words, 89% of the Door-A alignments actually

had worse SP-scores than the rearranged sequence alignments. The finding that Door-

A alignments have worse SP-scores than Door-S alignments is not is not surprising;

specifically, Door-A alignments are composed of concatenated alignments of smaller

sequence blocks and are therefore more “restricted” compared to the Door-S alignments

where the aligner has greater opportunity to improve the SP-score by aligning match-

ing nucleotides (or amino acids) across domain boundaries. These results demonstrate

how SP-scores need not be correlated with alignment quality or gene tree reconstruction

accuracy in the presence of domain rearrangement.

Note that we did not apply MDAT and ProDA to the simulated dataset. ProDA (or

ProDA 50) could not offer any improvement over Door-A since exact domain families

and domain sequence boundaries are already known for the simulated dataset. MDAT

could not be applied since it requires specifically formatted PFam annotations which

are unavailable for the simulated data.

4.2 Biological dataset results

We applied all five methods, Door-S, Door-A, MDAT, ProDA, and ProDA 50 to the 198

biological gene families and compared the accuracies of the resulting gene trees against
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Table 2. Number of gene families improving or worsening, per the DL-score, when

applying MDAT, ProDA, ProDA 50, Door-S, and Door-A to the 198 biological gene

families.

Method No. of Families

Improved

Avg. Percent

Improvement

No. of Families

Worsened

Avg. Percent

Worsening

MDAT 50 16.4 114 37.4

ProDA 39 19.1 120 26.3

ProDA 50 45 17 119 31.6

Door-S 42 15.4 125 36

Door-A 49 16 114 34.6

the gene trees constructed using the original (uncorrected) gene sequence alignments.3

Since true gene trees are unavailable for the biological dataset, relative gene tree accu-

racies were estimated based on DL-scores, as described previously. Table 2 shows the

results of this analysis. In contrast with the results on simulated datasets, we observed

that none of the methods could consistently improve all gene families and that the ma-

jority of gene families showed worse accuracy after the methods were applied. The best

performing methods on this dataset were MDAT and Door-A, which both improved

approximately 25% of the gene families and worsened 57.6% of the gene families.

We also observed that the different methods tended to improve different subsets of

gene families; see Figure 3. As expected, the greatest overlap in improved gene families

occurs for Door-S and Door-A and for ProDA and ProDA 50. When considering only

the best performing method of each type, MDAT, ProDA 50, and Door-A, we find that

they all show an improvement for 15 shared gene families (Figure 3(a)). This level of

overlap is highly unlikely to occur by chance (p value < 0.0001). In fact, based on

10,000 randomization experiments, we observed an average overlap of only 2.8 gene

families for the three methods. This suggests that it may be possible to predict which

gene families would benefit from the application of such methods.

These results also highlight the difficulty of dealing with domain rearrangement in

real biological gene families. In particular, error-prone identification of domains and

domain boundaries, and inability to identify all homologous regions affected by rear-

rangement can all greatly impact Door-S and Door-A, as well as the other methods. The

competitive performance of MDAT on these gene families also suggests that, for sev-

eral of the gene families, the gene sequences may actually be linearly alignable. E.g., the

seemingly incompatible domain orders 〈A,B〉 and 〈B,A〉 become linearly alignable in

the presence of a third sequence with domain order 〈A,B,A〉.

5 Discussion and Conclusion

In this work, we considered the problem of out-of-order domains within gene fami-

lies. We used carefully simulated gene families to demonstrate the impact of protein

domain shuffling and rearrangement on multiple sequence alignment and gene tree re-

construction accuracy, proposed two new computational methods, Door-S and Door-A,

3 ProDA and ProDA 50 could only be run successfully on 183 and 191 gene families, resp.
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Fig. 3. Venn diagrams for gene families improved by different methods. (a): Venn

diagram showing intersections of improving gene families for the three primary meth-

ods, MDAT, ProDA 50, and Door-A. (b) and (c): Venn diagrams showing intersections

of improving gene families for similar methods ProDA & ProDA 50 (b) and Door-S &

Door-A (c).

for correcting gene sequences and alignments for improved gene tree reconstruction

accuracy, demonstrated their drastic impact on gene tree reconstruction accuracy on the

simulated dataset, and assessed the potential real-world impact of the new methods and

MDAT and ProDA by applying them to biological gene families. Our findings demon-

strate the significant impact that proper handling of domain rearrangements can have

on gene tree reconstruction accuracy, and identify the substantial challenges that such

methods must overcome to become widely applicable in practice. Notably, none of the

evaluated methods could consistently improve the accuracy of reconstructed gene trees

for the biological gene families.

Between Door-S and Door-A, our experimental results on both simulated and bio-

logical gene families indicate that the concatenated alignment approach implemented

in Door-A may be slightly superior, overall, to the simpler approach implemented in

Door-S. However, we found that there were several biological gene families that were

improved by Door-S but not by Door-A (Figure 3), and further work is needed to better

understand the scenarios in which one or the other method works better. Our results on

the biological dataset suggest that both Door-S and Door-A could be further improved

by combining protein domain annotations with the local alignment approach of ProDA

to better identify out-of-order domains and other homologous regions and their bound-

aries. Our results also suggest that first constructing an order-preserving alignment, as

done by MDAT, may help to better identify gene families with true out-of-order do-

mains which could benefit from the reordering-based approach of Door-S and Door-A.
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Finally, our results are based on using MUSCLE as the underlying sequence aligner and

it could be instructive to assess the impact of using other sequence aligners to compute

baseline alignments and Door-S and Door-A corrected alignments.
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