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Abstract—Protein domains play an important role in the function and
evolution of many gene families. Previous studies have shown that
domains are frequently lost or gained during gene family evolution. Yet,
most computational approaches for studying gene family evolution do
not account for domain-level evolution within genes. To address this
limitation, a new three-level reconciliation framework, called the Domain-
Gene-Species (DGS) reconciliation model, has been recently developed
to simultaneously model the evolution of a domain family inside one or
more gene families and the evolution of those gene families inside a
species tree. However, the existing model applies only to multi-cellular
eukaryotes where horizontal gene transfer is negligible.

In this work, we generalize the existing DGS reconciliation model
by allowing for the spread of genes and domains across species
boundaries through horizontal transfer. We show that the problem of
computing optimal generalized DGS reconciliations, though NP-hard, is
approximable to within a constant factor, where the specific approxima-
tion ratio depends on the “event costs” used. We provide two different
approximation algorithms for the problem and demonstrate the impact
of the generalized framework using both simulated and real biological
data. Our results show that our new algorithms result in highly accurate
reconstructions of domain family evolution for microbes.

Index Terms: Protein domains, microbial gene family evo-
lution, phylogenetic reconciliation, horizontal transfer, ap-
proximation algorithms

1 INTRODUCTION

Many proteins are known to consist of one or more indepen-
dently folding structural and/or functional units called pro-
tein domains (or just domains for short). A key characteristic
of domains is that the same type of domain (i.e., domains
from the same domain family) can be found in proteins
from more than one protein family. Thus, a domain can
be viewed as a recurrent structural or functional building
block that can be found in proteins from multiple distinct
protein-coding gene families. Many thousands of domain
families have been identified in the literature, e.g., [8], and
it is well understood that domains play an important role
in the function and evolution of many gene families [1],
[23], [30], [32]. In fact, it has been estimated that about 70%
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of eukaryotic and 40% of prokaryotic protein-coding genes
consist of one or more domains [14], [16].

Domain families evolve within gene families and do-
mains are frequently lost or gained during gene family
evolution, so genes from the same gene family may have
different domain compositions. In other words, just as gene
families evolve within a species tree, domain families evolve
within one or more gene families. Given the importance
of understanding domain evolution, several computational
methods have been developed for reconstructing the evo-
lutionary histories of domain families in the context of
changes in domain composition or architectures (i.e., ar-
rangements of domains within genes) [7], [34], [35]. These
methods take as input a collection of domain trees (where
a domain tree is a phylogenetic tree depicting evolutionary
relationships between domains from the same domain fam-
ily) along with domain compositions or architectures for the
corresponding genes, with the method of Wu et al. [35] also
requiring a species tree. The methods seek to reconstruct the
compositions/architectures for ancestral genes, along with
events such as gene fusions and fissions. However, these
methods do not capture the interdependence of domain,
gene, and species-level evolution, and do not explicitly
consider gene family evolution (i.e. do not use gene trees).

More recently, a new class of phylogenetic reconciliation
based approaches has been developed for studying domain
level and gene level evolution in a unified framework [18]–
[20], [28]. These reconciliation based methods take as input
domain, gene, and species trees and seek to explicitly recon-
struct the evolution of domain trees within gene trees and
of gene trees within species trees. The earliest work in this
direction was that of Stolzer et al. [28] where they used the
Duplication-Transfer-Loss (DTL) reconciliation model [2],
[12], [27], [29], traditionally used for reconciling gene trees
with species trees, to additionally reconcile domain trees
with gene trees. Their approach takes as input a domain
tree, a gene tree, and a species tree and first reconciles
the gene tree with the species tree, then reconciles the
domain tree with the gene tree, and then interprets the
domain tree to gene tree reconciliation in light of the gene
tree to species tree reconciliation. Being based on the DTL
reconciliation model, the approach of Stolzer at al. allows
for gene duplication, horizontal gene transfer, and gene loss
when reconciling the gene tree with the species tree and
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for domain duplication, domain horizontal transfer, and
domain loss when reconciling the domain tree with the gene
tree. Domain transfers are then further interpreted as being
intra-species or inter-species based on whether the genes
involved in that domain transfer are from the same species
or from different species according to the computed gene
tree species trees reconciliation. This provides a unified view
of how the domain tree evolved inside the gene tree and
how the gene tree evolved inside the species tree.

The approach of Stolzer et al. [28], while groundbreak-
ing, has two important limitations: First, it does not ade-
quately model the interdependence of domain, gene, and
species evolution. Specifically, it uses a simpler problem
formulation that assumes a fixed gene to species mapping
and does not seek a joint reconciliation of the domain,
gene, and species trees. And second, it only allows for the
reconciliation of a domain tree with a single gene tree.
This can be quite limiting since domain families gener-
ally evolve within multiple gene families, with domains
frequently transferring between genes from different gene
families. Thus multiple gene trees must be simultaneously
considered to infer the complete evolutionary history of
most domain families. Later work by Li and Bansal [18],
[19] addressed these limitations by introducing an inte-
grated reconciliation framework, called the Domain-Gene-
Species (DGS) reconciliation model, for joint reconciliation
of domain, gene, and species trees. This DGS reconciliation
model takes as input a domain tree, a collection of gene trees
(i.e., all gene trees that contain at least one domain from
that domain family), and a species tree and seeks a jointly
optimal reconciliation of all trees. Thus, DGS reconciliation
explicitly models the interdependence of domain-, gene-,
and species-level evolution. Li and Bansal also proved that
the associated optimization problem (computing an optimal
DGS reconciliation) is NP-hard and provided an efficient
heuristic algorithm and an exact integer linear program-
ming solution for the problem [18], [19]. A key limitation
of the DGS reconciliation model is that it is designed for
analyzing domains and genes not affected by horizontal
transfer. Specifically, each gene tree is assumed to evolve
in the species tree under a duplication-loss model (i.e.,
horizontal gene transfer is not allowed), and domains can
be transferred from one gene to another (within or across
gene families) only if both those genes are present in the
same species/genome. The absence of inter-species transfer
of genes or domains makes DGS reconciliation well-suited
to most multi-cellular eukaryotes but makes it inapplicable
to microbial species.

Probabilistic models combing domain, gene, and species
level evolution have also been developed [22], [24]. Muham-
mad et al. [24] introduced DomainDLRS, a generative prob-
abilistic model and inference framework that takes as input
a dated species tree and a multiple sequence alignment for
each domain family and estimates a posterior distribution
over the reconciled gene tree and domain trees. However,
DomainDLRS operates under a duplication-loss framework
and does not allow for the horizontal transfer of either genes
or domains. It also requires the species tree to be dated
and can only consider the evolution of domains in a single
gene family. More recently, Menet et al. [22] introduced
a probabilistic framework for host-symbiont-gene phylo-

genetic reconciliation. This framework, though developed
in a different phylogenetic context, can also be applied to
domain-gene-species reconciliation and has similar goals as
our current work. We discuss this probabilistic approach of
Menet et al. [22] in detail in Section 5.
Our contributions. In this work, we address a key current
limitation of DGS reconciliation by introducing a General-
ized Domain-Gene-Species (Gen-DGS) reconciliation model that
explicitly models inter-species gene and domain horizontal
transfer. We formalize the Gen-DGS reconciliation model
and define the associated computational problem, which
takes as input a domain tree, a collection of gene trees, a
species tree, and event costs and seeks an optimal joint rec-
onciliation of all trees. Gen-DGS reconciliation includes all of
the original events types from the DGS reconciliation model
and additionally allows for the horizontal transfer of genes
and domains across species boundaries. While the problem
of computing optimal Gen-DGS reconciliations is NP-hard
(follows from the NP-hardness of computing optimal DGS
reconciliations), we show that it is approximable to within
a constant factor, where the specific approximation ratio
depends on the event costs used for the reconciliation. We
provide two different approximation algorithms with this
approximation ratio and demonstrate the impact of Gen-
DGS reconciliation using both simulated and real biological
data. On simulated data, we find that our new algorithms
result in highly accurate reconstructions of domain family
evolution, showing much higher accuracy than SEADOG,
which implements a heuristic for the DGS reconciliation
problem [19], and far greater applicability than Notung-
DM, which implements the approach of Stolzer et al. [28].
On the real dataset, which consists of 11 cyanobacterial
species, 2587 gene trees, and 2347 domain trees, we found
that Notung-DM could be correctly applied to fewer than
25% of the domain families. An analysis of the multi-
gene domain families in this dataset using our algorithms
also sheds light on the relative prevalence of different
types of domain-transfer events in real microbial domain
families. We found, for example, that about 75% of all
domain-transfer events were within-gene-family transfers,
with over half of all domain-transfer events being within-
gene-family and inter-species. An implementation of our al-
gorithms for Gen-DGS reconciliation is available freely from
https://compbio.engr.uconn.edu/software/seadog-gen/.

2 DEFINITIONS AND PRELIMINARIES

2.1 Preliminaries
We follow basic notation, definitions and preliminaries
from [19]. Given a rooted tree T , we denote its node,
edge, and leaf sets by V (T ), E(T ), and Le(T ) respectively.
The root node of T is denoted by rt(T ), the parent of a
node v ∈ V (T ) by paT (v), its set of children by ChT (v),
and the (maximal) sub-tree of T rooted at v by T (v). The
set of internal nodes of T , denoted I(T ), is defined to be
V (T ) \ Le(T ). We define ≤T to be the partial order on V (T )
where x ≤T y if y is a node on the path between rt(T ) and
x. The partial order ≥T is defined analogously, i.e., x ≥T y
if x is a node on the path between rt(T ) and y. We say
that y is an ancestor of x, or that x is a descendant of y, if
x ≤T y (note that, under this definition, every node is a
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descendant as well as ancestor of itself). We say that x and
y are incomparable if neither x ≤T y nor y ≤T x. A tree is
binary if all of its internal nodes have exactly two children.
Given a non-empty subset L ⊆ Le(T ), we denote by lcaT (L)
the least common ancestor (LCA) of all the leaves in L in
tree T ; that is, lcaT (L) is the unique smallest upper bound
of L under ≤T . Throughout this work, the term tree refers
to rooted binary trees.

As with DGS reconciliation, the Gen-DGS reconciliation
model requires a species tree S, a collection of gene trees G,
and a domain tree D. These three types of trees are defined
as follows. A species tree is a tree that depicts the evolution-
ary relationships for a set of species of interest. A gene tree
is a tree that depicts the evolutionary relationships among
the gene sequences belonging to a specific gene family, re-
stricted to the species represented in the species tree. Finally,
a domain tree depicts the evolutionary relationships among
the domain sequences belonging to a specific domain family,
restricted to the species represented in the species tree.
Note that domains from the same domain family may be
found in multiple different gene families. Thus, the domain
sequences present in the domain tree may be associated with
several different gene families. Accordingly, we implicitly
assume that all gene families represented in the domain
tree have a corresponding gene tree in the collection G.
For convenience, we use Le(G) to denote ∪G∈G Le(G), and
analogously use V (G), I(G), and E(G).

Each leaf of each gene tree is labeled with the species
from which that gene sequence was obtained. This defines a
leaf-to-leaf mapping from each gene tree of G to the species
tree, denoted LG : Le(G) → Le(S) that maps each leaf node
g ∈ Le(G) to that unique leaf node s ∈ Le(S) which has
the same species label as g. Note that a gene tree may have
more than one gene from the same species. Likewise, each
leaf in a domain tree is labeled with the gene in which
that domain sequence was found. This defines a leaf-to-leaf
mapping from the domain tree to the gene trees, denoted
LD : Le(D) → Le(G) that maps each leaf node d ∈ Le(D) to
that unique leaf node g ∈ Le(G) which has the same gene
label as d. Note that, since domains from the same domain
family may be present in multiple gene families, different
leaves of the domain tree may map to genes from different
gene trees.

2.2 Gen-DGS Reconciliation

Like the DGS reconciliation model [19], the Gen-DGS rec-
onciliation model defines what constitutes a biologically
valid joint reconciliation of the domain tree D, collection
of gene trees G, and species tree S. DGS reconciliation [19]
models key evolutionary events that shape gene family
and domain family evolution in multicellular eukaryotes:
speciation, gene duplication, and gene loss for gene family
evolution, and co-divergence, intra-species domain transfer (i.e.,
acquisition of a domain by a gene from another gene in
the same species/genome), domain duplication, and domain
loss for domain family evolution. Gen-DGS reconciliation
extends upon DGS reconciliation in two ways: (i) it allows
for horizontal gene transfer, in addition to speciation, gene
duplication, and gene loss, for gene family evolution, and
(ii) it allows for inter-species horizontal domain transfer, in

addition to co-divergence, intra-species domain transfer,
domain duplication, and domain loss, for domain family
evolution. Thus, Gen-DGS reconciliation is a generalization
of DGS reconciliation.

Under the Gen-DGS reconciliation model, gene families
evolve under the well-established Duplication-Transfer-Loss
(DTL) reconciliation framework [2], [3], [11], [12], [25], [27],
[29]. Specifically, the constraints imposed by the Gen-DGS
reconciliation model on a valid reconciliation of any gene
tree G ∈ G with species tree S are identical to the constraints
imposed by the DTL reconciliation framework [2], [3]. Ac-
cordingly, we provide a definition of DTL reconciliation
below [2], [3], suitably extended to a collection of gene trees
G.

Definition 2.1 (DTL reconciliation of G and S [2], [3]). Given
a collection of gene trees G and species tree S, along with the
corresponding leaf-mapping LG : Le(G) → Le(S), a DTL recon-
ciliation for G and S is a six-tuple ⟨MG ,ΣG ,∆G ,ΘG ,ΞG , τG⟩,
where MG : V (G) → V (S) maps each node of G to a node of
S, the sets ΣG , ∆G and ΘG partition I(G) into speciation, gene-
duplication, and (horizontal) gene-transfer nodes, respectively, ΞG

is a subset of gene tree edges that represent gene-transfer events
and τG : ΘG → V (S) specifies the recipient species for each
gene-transfer event, subject to the following constraints:

1) If g ∈ Le(G), then MG(g) = LG(g).
2) If g ∈ I(G) and g′ and g′′ denote the children of g, then,

a) MG(g) ̸<S MG(g′) and MG(g) ̸<S

MG(g′′),
b) At least one of MG(g′) and MG(g′′) is a de-

scendant of MG(g).

3) Given any edge (g, g′) ∈ E(G), (g, g′) ∈ ΞG if and only
if MG(g) and MG(g′) are incomparable.

4) If g ∈ I(G) and g′ and g′′ denote the children of g, then,

a) g ∈ ΣG only if MG(g) =
lca(MG(g′),MG(g′′)) and MG(g′) and
MG(g′′) are incomparable,

b) g ∈ ∆G only if MG(g) ≥S

lca(MG(g′),MG(g′′)),
c) g ∈ ΘG if and only if either (g, g′) ∈ ΞG or

(g, g′′) ∈ ΞG .
d) If g ∈ ΘG and (g, g′) ∈ ΞG , then MG(g)

and τG(g) must be incomparable, and MG(g′)
must be a descendant of τG(g), i.e., MG(g′) ≤S

τG(g).

Constraints 1, 2, and 3 in the definition above constrain
the mapping of the gene tree(s) into the species tree and are
necessary (though not necessarily sufficient) for biological
feasibility. The remaining constraints specify the conditions
under which the events speciation (Constraint 4a), gene-
duplication (Constraint 4b), and gene-transfer (Constraints
4c and 4d) can be invoked. We note that, under the above
definition, a DTL reconciliation is allowed to potentially
violate temporal constraints imposed by the species tree;
specifically, the invoked transfer events could, in some
cases, induce contradictory constraints on possible datings
(orderings) of the internal nodes of the species tree [27], [29].
We refer the reader to [2], [3], [29] for further details on this
DTL reconciliation model.
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The Gen-DGS reconciliation model can now be formally
defined as follows:

Definition 2.2 (Gen-DGS reconciliation). Given a domain
tree D, collection of gene trees G, a species tree S, and leaf-
mappings LD : Le(D) → Le(G) and LG : Le(G) → Le(S), a
Gen-DGS reconciliation for D,G, and S is a thirteen-tuple
⟨MD,MG ,ΣD,ΣG ,∆D,∆G ,ΘD

1 ,ΘD
2 ,ΘG ,ΞD,ΞG , τD, τG⟩,

where MD : V (D) → V (G) and MG : V (G) → V (S) map
each node of D to a node from G and each node from G to a node
of S, respectively, the sets ΣD, ΣG , ΘD

1 , and ΘD
2 partition I(D)

into co-divergence, domain-duplication, intra-species domain-
transfer, and inter-species domain-transfer nodes, respectively,
the sets ΣG , ∆G , and ΘG partition I(G) into speciation, gene-
duplication, and gene-transfer nodes, respectively, ΞD is a subset
of domain tree edges that represent domain-transfer events, and
ΞG is a subset of gene tree edges that represent gene-transfer
events and τD : ΘD → V (G) specifies the recipient gene for
each domain-transfer event, and τG : ΘG → V (S) specifies the
recipient species for each gene-transfer event, subject to:

Gene-species constraints:

1) The six-tuple ⟨MG ,ΣG ,∆G ,ΘG ,ΞG , τG⟩ must be a
valid DTL reconciliation of G and S (per Definition 2.1).

Domain-Gene constraints:

2) If d ∈ Le(D), then MD(d) = LD(d).
3) If d ∈ I(D) and d′ and d′′ denote the two children of d,

then,

a) MD(d) ̸<G MD(d′) and MD(d) ̸<G
MD(d′′)

b) At least one of MD(d′) and MD(d′′) is a
descendant of MD(d) (in the same gene tree).

4) Given any edge (d, d′) ∈ E(D), (d, d′) ∈ ΞD if and
only if MD(d′) and MD(d′′) are in different gene trees
or incomparable in the same gene tree.

5) If d ∈ I(D) and d′ and d′′ denote the children of d, then,

a) d ∈ ΣD if and only if MD(d) =
lca(MD(d′),MD(d′′)) (in the same gene tree)
and MD(d′) and MD(d′′) are incomparable,

b) d ∈ ∆D only if MD(d) ≥G
lca(MD(d′),MD(d′′)) (in the same gene
tree),

c) d ∈ ΘD if and only if either (d, d′) ∈ ΞD or
(d, d′′) ∈ ΞD .

d) If d ∈ ΘD
1 , where (d, d′) ∈ ΞD , then

MD(d) and τD(d) must either be in differ-
ent gene trees or be incomparable in the same
gene tree, MG(MD(d)) = MG(τD(d)), and
MD(d′) ≤G τD(d).

e) If d ∈ ΘD
2 , where (d, d′) ∈ ΞD , then

MD(d) and τD(d) must either be in differ-
ent gene trees or be incomparable in the same
gene tree, MG(MD(d)) = MG(τD(d)), and
MD(d′) ≤G τD(d).

In the above definition, Constraint 1 specifies what
constitutes a valid reconciliation of the gene tree(s) with
the species tree, while the remaining constraints apply to
the reconciliation of the domain tree with the gene tree(s).

Observe that these domain-gene constraints are similar to
the gene-species constraints imposed by DTL reconcilia-
tion; i.e., notice the correspondence between Constraints 1
through 4 of Definition 2.1 and Constraints 2 through 5
of Definition 2.2. Essentially, under Gen-DGS reconciliation,
the reconciliation of the domain tree with the gene tree(s)
employs a DTL-like reconciliation model, with the following
two key differences: (i) the domain tree can evolve within
more than one gene tree, and (ii) the type of domain-transfer
event (i.e., intra-species or inter-species) additionally de-
pends on the reconciliation between the gene tree(s) and the
species tree. This interdependence between domain-gene
and gene-species reconciliations stems from Constraint 5d,
which enforces that the donor gene and recipient gene for
any intra-species domain-transfer event must map to the
same species in the species tree. This relationship between
gene-species mappings and intra-species domain-transfer
events necessitates the computation of a joint reconciliation
at the domain-gene and gene-species levels when seeking
optimal Gen-DGS reconciliations. Figure 1 provides a simple
illustrative example of Gen-DGS reconciliation.
Parsimony based problem formulation. Given D, G, and
S, our goal is to find a most parsimonious Gen-DGS recon-
ciliation for them. Under this framework, we assign posi-
tive costs for all gene-level and domain-level evolutionary
events except for speciation and co-divergence (since those
are null events), and seek a Gen-DGS reconciliation with
smallest total cost of invoked events. Formally,

Definition 2.3 (Reconciliation cost). Given a Gen-DGS recon-
ciliation α for D, G, and S, the reconciliation cost for α is the
total cost of all evolutionary events invoked by α.

We point out that while speciation, gene-duplication,
gene-transfer, co-divergence, domain-duplication, intra-
species domain-transfer, and inter-species domain-transfer
events are explicitly specified by any Gen-DGS reconcil-
iation, gene-losses and domain-losses are not. However,
the minimum number of gene-losses and domain-losses
required by a given Gen-DGS reconciliation can be easily
computed as in the DTL reconciliation model [2].

Event costs. We use PG
∆, PG

Θ , and PG
loss to denote gene-

duplication, gene-transfer, and gene-loss costs, respectively,
and PD

∆ , PD
Θ1

, PD
Θ2

, and PD
loss to denote domain-duplication,

intra-species domain-transfer, inter-species domain transfer,
and domain-loss costs, respectively. We further distinguish
between domain-transfers for which the donor and recip-
ient genes are within the same gene family and those in
which the donor and recipient genes are from different
gene families. Thus, instead of requiring a single cost for
all intra-species domain-transfer events, we allow for a
within-gene-family intra-species domain-transfer cost, denoted
PD
Θ1w

, and an across-gene-family intra-species domain-transfer
cost, denoted PD

Θ1a
. Likewise, instead of a single cost for all

inter-species domain-transfer events, we allow for a within-
gene-family inter-species domain-transfer cost, denoted PD

Θ2w
,

and an across-gene-family inter-species domain-transfer cost,
denoted PD

Θ2a
.

The problem of computing an optimal Gen-DGS recon-
ciliation can now be stated as follows:

Definition 2.4 (Optimal Gen-DGS reconciliation (O–
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Transfer
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Gene Transfer 1 Gene Transfer 2
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Fig. 1. Gen-DGS Reconciliation. This figure shows a Gen-DGS-reconciliation between a domain tree, two gene trees, and a species tree on
four taxa. The mapping of the domain tree into the gene trees and of the gene trees into the species tree are shown by the dotted red lines.
Domain-gene leaf associations are shown by shared leaf labels, and gene-species leaf associations are shown by shared letters A,B, C, or D. In
the gene-species reconciliation, a gene duplication event (marked by the blue square) is invoked at the root of Gene Tree 1, while all other internal
nodes of that gene tree represent speciation events. In Gene Tree 2, we observe a speciation event at the root and gene-transfer events at the other
two internal nodes (marked by green circles). In the domain-gene reconciliation, two domain transfer events are invoked at the nodes marked with
the purple (left) and orange (right) stars, and all other internal nodes of the domain tree represent co-divergence events. Bolded (blue) edges in
the domain tree represent domain-transfer edges. The purple star represents an intra-species domain-transfer event since its donor and recipient
genes are mapped to the same species A in the species tree. So, we denote this event as an intra-species domain transfer event (Θ1). In contrast,
the orange star represents an inter-species domain-transfer event since its donor and recipient genes map to different species, C and D, in the
species tree. Observe that both these domain-transfer events are across-gene-family transfers.

Gen-DGS) problem). . Given D,G, and S, along with event
costs PG

∆, PG
Θ , PG

loss, PD
∆ , PD

Θ1w
, PD

Θ1a
, PD

Θ2w
, PD

Θ2a
, and PD

loss,
the O-Gen-DGS problem is to find a Gen-DGS reconciliation for
D,G and S with minimum reconciliation cost.

2.3 Relationship to the approach of Stolzer et al.

It is worth noting the similarities between Gen-DGS recon-
ciliation and the domain event inference approach of Stolzer
et al. [28]. Like Gen-DGS reconciliation, Stolzer et al. also use
the DTL reconciliation model (albeit a slightly different one)
for reconciling the gene tree with the species tree and the
domain tree with the gene tree. They also distinguish be-
tween intra-species domain transfer events, called domain
insertion events in [28], and inter-species domain transfer
events based on the species mapping of the donor and
recipient genes, just like in Gen-DGS reconciliation. The two
key differences between Gen-DGS reconciliation and the
approach of Stolzer et al. [28] are that (i) Gen-DGS allows
for the domain tree to evolve within multiple gene trees
while the approach of Stolzer et al. allows for only a single
gene tree, and (ii) the O-Gen-DGS problem seeks jointly
optimal domain-gene and gene-species reconciliations while
the approach of Stolzer et al. computes the domain-gene and
gene-species reconciliations separately and independently.

2.4 NP-hardness of the O-Gen-DGS problem

The optimal DGS reconciliation problem is known to be NP-
hard [19], and that result also implies the NP-hardness of the
O-Gen-DGS problem. This is based on the observation that
if gene-transfer events and inter-species domain-transfer
events are disallowed then an optimal Gen-DGS reconcili-
ation must, in fact, be an optimal DGS reconciliation. Thus,
the O-Gen-DGS problem can be used to compute optimal
DGS reconciliations if the event costs PG

Θ , PD
Θ2w

, and PD
Θ2a

are set large enough to prevent the invocation of those
events.

Theorem 2.1. The O-Gen-DGS problem is NP-hard.

Since a reduction from the decision version of the opti-
mal DGS reconciliation problem [19] to the decision version
of the O-Gen-DGS problem is straightforward, we omit a
formal proof.

3 ALGORITHMS FOR O-GEN-DGS
Observe that the introduction of inter-species domain trans-
fer in the Gen-DGS model weakens (but does not com-
pletely break) the connection between domain-gene and
gene-species reconciliations since a domain may be trans-
ferred irrespective of whether the donor and recipient genes
map to the same species (or node) in the species tree or
not. Thus, while algorithms for DGS reconciliation had
to necessarily estimate jointly optimal domain-gene and
gene-species reconciliations [18], [19], separately computing
optimal domain-gene and gene-species reconciliations may
yield near-optimal Gen-DGS reconciliations. In fact, as we
show later (Corollary 3.1), if all four types of domain-
transfer events are assigned the same cost, then an optimal
solution for the O-Gen-DGS problem can be computed in
polynomial time by separately computing optimal domain-
gene and gene-species reconciliations. We leverage this in-
sight to design two different approximation algorithms for
the O-Gen-DGS problem. Both approximation algorithms
have the same approximation ratio, but the second ap-
proximation algorithm (Section 3.2) has better empirical
performance than the first (Section 3.1).

3.1 A Simple Approximation Algorithm
We first propose a very simple approximation algorithm
for the O-Gen-DGS problem based on computing separate
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optimal reconciliations at the domain-gene and gene-species
levels. The overall idea is to simply compute an optimal
DTL reconciliation, using the algorithm of Bansal et al. [3],
for each gene tree in G with the species tree S, and then
compute an optimal DTL reconciliation, using a trivial
extension of the DTL reconciliation algorithm of Bansal
et al. [3], for the domain tree and gene trees. Note that
this trivial extension of the DTL reconciliation algorithm is
required to enable the domain tree to be reconciled with
multiple gene trees instead of just a single gene tree. The
extension is straightforward and was also described by Li
and Bansal [19]. Thus, we use DTL reconciliation at the
gene-species level since each gene tree is being reconciled
to a single species tree, but use the extended version of DTL
reconciliation at the domain-gene level since the domain tree
needs to be simultaneously reconciled to all gene trees in G.

A key step in this overall approach is to use the largest
of the four domain-transfer costs (i.e., maximum among
PD
Θ1w

, PD
Θ1a

, PD
Θ2w

, and PD
Θ2a

) as the cost of a transfer event
when computing domain-gene DTL reconciliations. Once
the domain-gene reconciliation is computed, the inferred
domain-transfer events can be easily relabeled/classified
as intra-species or inter-species based on the previously
computed gene-species reconciliation. If Pmax denotes the
maximum among the four domain-transfer costs and Pmin

denotes the minimum, then doing so ensures that the re-
sulting Gen-DGS reconciliation has total reconciliation cost
within a factor of Pmax/Pmin of the optimum. A formal
description of this approximation algorithm follows:
Algorithm SimpleApprox(D,G, S,LD,LG)

1: Let PG
∆, P

G
Θ , P

G
loss, P

D
∆ , PD

Θ1w
, PD

Θ1a
, PD

Θ2w
, PD

Θ2a
, PD

loss de-
note the assigned event costs.

2: for each gene tree G ∈ G do
3: Compute an optimal DTL reconciliation of G

and S using duplication, transfer, and loss event
costs PG

∆, P
G
Θ , and PG

loss, respectively, to obtain
MG ,ΣG ,∆G ,ΘG ,ΞG , and τG

4: Let Pmax = max{PD
Θ1w

, PD
Θ1a

, PD
Θ2w

, PD
Θ2a

}
5: Compute an optimal DTL reconciliation of D and the

gene trees from G using duplication, transfer, and loss
event costs PD

∆ , Pmax, and PD
loss, respectively, to obtain

MD,ΣD , ∆D,ΞG , and τG .
6: Let ΘD be the set of domain-transfer nodes inferred in

the previous step. Classify each node of ΘD as belonging
to either ΘD

1 or ΘD
2 based on the gene-species reconcili-

ations computed in Steps 2 and 3.
7: return the computed Gen-DGS reconciliation

⟨MD,MG ,ΣD,ΣG ,∆D,∆G ,ΘD
1 ,ΘD

2 ,ΘG ,ΞD,ΞG , τD, τG⟩

Lemma 3.1. Algorithm SimpleApprox can be implemented to
run in O(| Le(D))| · | Le(G)|2 + | Le(G)| · | Le(S)|2) time.

Proof. The time complexity of Algorithm SimpleApprox is
dominated by Steps 3, 3, and 5, in which optimal DTL
reconciliations are computed. For our implementation of
this algorithm, we wish to sample optimal DTL reconcili-
ations uniformly at random from the space of all optimal
DTL reconciliations. This can be accomplished in O(mn2)
time, where m denotes the number of leaves in the “guest”
tree and n denotes the number of leaves in the “host” tree,
using existing algorithms [3] and their trivial extensions

(i.e., to multiple host trees) [19]. This translates into time
complexities of O(

∑
G∈G | Le(G)| · | Le(S)|2) to compute all

gene-species reconciliations and O(| Le(D))| · | Le(G)|2) to
compute the domain-gene reconciliation. Summing these
up, we get a total time complexity of O(| Le(D))| · | Le(G)|2+
| Le(G)| · | Le(S)|2).

We point out that the above algorithm can, in fact, be im-
plemented to run in O(| Le(D))| · | Le(G)|+ | Le(G)| · | Le(S)|)
time if using faster, O(mn)-time DTL reconciliation algo-
rithms [2]. However, this faster implementation would be
unable to sample uniformly at random from the space of
optimal DTL reconciliations, which is useful for estimating
uncertainty in inferred reconciliations.

Theorem 3.1. Let Pmax denote the maximum and Pmin de-
note the minimum of the four event costs PD

Θ1w
, PD

Θ1a
, PD

Θ2w
,

and PD
Θ2a

. Algorithm SimpleApprox is a Pmax

Pmin
-approximation

algorithm for the O-Gen-DGS problem.

Proof. Let c denote the reconciliation cost of an optimal
Gen-DGS reconciliation, denoted α, for D,G, and S under
the given event costs. Further, let cDG and cGS denote the
domain-gene and gene-species reconciliation costs for this
optimal reconciliation α. Thus, c = cDG + cGS . Now, let c′

denote the reconciliation cost of the Gen-DGS reconciliation,
denoted α′, computed by Algorithm SimpleApprox. Finally,
as before, let c′DG and c′GS denote the domain-gene and
gene-species reconciliation costs for this computed recon-
ciliation α′. Again, we must have c′ = c′DG + c′GS .

Since Algorithm SimpleApprox computes an optimal DTL
reconciliation between each gene tree and S, we must have
c′GS ≤ cGS . Thus, it suffices to show that c′DG ≤ Pmax

Pmin
· cDG .

Suppose c′′DG denotes the reconciliation cost of an opti-
mal DTL reconciliation, denoted by α′′, of D and G with
duplication, transfer, and loss event costs set to PD

∆ , Pmin,
and PD

loss, respectively. Since the corresponding Gen-DGS
reconciliation uses the same costs for domain-duplication
and domain-loss, and the same or higher costs for domain-
transfer events, c′′DG must be a lower bound on cDG , i.e.,
c′′DG ≤ cDG . Now, consider the reconciliation cost, ĉ′′DG of α′′

if we assign each transfer event in α′′ a cost of Pmax instead
of Pmin. Clearly, ĉ′′DG ≤ Pmax

Pmin
· c′′DG . Finally, observe that

c′DG ≤ ĉ′′DG since α′ is an optimal DTL reconciliation under
those event costs.

Putting all the inequalities in the above paragraph to-
gether, we get c′DG ≤ Pmax

Pmin
· c′′DG ≤ Pmax

Pmin
· cDG , as was to be

shown.

The following corollary identifies a special case of the O-
Gen-DGS problem that can be solved exactly in polynomial
time (despite the overall problem being NP-hard).

Corollary 3.1. The O-Gen-DGS problem can be solved exactly
in polynomial time if PD

Θ1w
= PD

Θ1a
= PD

Θ2w
= PD

Θ2a
.

Proof. From Theorem 3.1, we know that Algorithm Sim-
pleApprox becomes an exact algorithm for the O-Gen-
DGS problem if PD

Θ1w
= PD

Θ1a
= PD

Θ2w
= PD

Θ2a
, and

Algorithm SimpleApprox has polynomial time complexity
(Lemma 3.1).

We note that, when analyzing microbial gene families,
it makes sense to assign similar costs to the four types
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of domain-transfer events; for example, one may assign
PD
loss = 1, PD

∆ = 2, PD
Θ1w

= 3, PD
Θ1a

= 4, PD
Θ2w

= 4, and
PD
Θ2a

= 5. The SimpleApprox algorithm would become a 5/3-
approximation algorithm in this case.

3.2 An Improved Approximation Algorithm
We now provide an improved version of the SimpleApprox
algorithm in which, instead of using the existing DTL rec-
onciliation framework to reconcile the domain tree with the
gene tree(s), we use a modified version of DTL reconciliation
that can separately consider the four types of domain-
transfer events and account for differences in their costs.
We refer to the resulting improved approximation algorithm
as the ImprovedApprox algorithm and prove that it has the
same approximation ratio as the SimpleApprox algorithm.
We also demonstrate later that the ImprovedApprox algorithm
has better empirical performance than SimpleApprox.

The ImprovedApprox algorithm is very similar to the algo-
rithm used by Stolzer et al. [28] for domain event inference,
but has three key enhancements: First, it can reconcile the
domain tree with multiple gene trees. Second, it allows for
across-gene-family domain-transfers. And third, it uses a
different version of the DTL reconciliation problem [2] than
that used by Stolzer et al. [28], which, as we demonstrate
later, significantly improves the scalability and applicability
of the algorithm.
Algorithm ImprovedApprox(D,G, S,LD,LG)

1: Let PG
∆, P

G
Θ , P

G
loss, P

D
∆ , PD

Θ1w
, PD

Θ1a
, PD

Θ2w
, PD

Θ2a
, PD

loss de-
note the assigned event costs.

2: for each gene tree G ∈ G do
3: Compute an optimal DTL reconciliation of G

and S using duplication, transfer, and loss event
costs PG

∆, P
G
Θ , and PG

loss, respectively, to obtain
MG ,ΣG ,∆G ,ΘG ,ΞG , and τG

4: Compute an optimal modified-DTL reconciliation of D
and the gene trees from G using duplication and loss
event costs PD

∆ and PD
loss, respectively, and the four

domain-transfer type costs PD
Θ1w

, PD
Θ1a

, PD
Θ2w

, and PD
Θ2a

,
to obtain MD,ΣD , ∆D,ΘD

1 ,ΘD
2 ,ΞG , and τG .

5: return the computed Gen-DGS reconciliation
⟨MD,MG ,ΣD,ΣG ,∆D,∆G ,ΘD

1 ,ΘD
2 ,ΘG ,ΞD,ΞG , τD, τG⟩

Observe that, in Step 4 of the above algorithm, we
compute an optimal modified-DTL reconciliation of D with
the gene trees from G. A modified-DTL reconciliation is the
same as a DTL reconciliation except that a distinction is
made between the four types of domain-transfer events. It
is easy to adapt existing algorithms for computing optimal
DTL reconciliations [2], [3] to explicitly consider all four
domain-transfer types during computation and account for
any differences in their assigned costs. Specifically, such
a modification only requires a trivial adjustment (inclu-
sion of new cases) in the dynamic programming equation
that forms the basis of algorithms for computing optimal
DTL reconciliations and consideration of the given (previ-
ously computed) gene-species reconciliation to distinguish
between inter-species and intra-species domain-transfers.
These adjustments can be made without affecting the opti-
mality or asymptotic time complexity of the underlying dy-
namic programming algorithm. Since nearly identical modi-
fications to DTL reconciliation algorithms have already been

previously described [19], [28], we omit a formal description
of the algorithm used to compute optimal modified-DTL
reconciliations.

The time complexity of ImprovedApprox remains the same
as that of SimpleAprox since time complexity is again domi-
nated by the time required to compute the gene-species and
domain-gene reconciliations, yielding the following lemma.

Lemma 3.2. Algorithm ImprovedApprox can be implemented
to run in O(| Le(D))| · | Le(G)|2 + | Le(G)| · | Le(S)|2) time.

We can use the fact that the SimpleApprox algorithm is a
Pmax

Pmin
-approximation algorithm (Theorem 3.1) to prove that

the ImprovedApprox algorithm must also then be a Pmax

Pmin
-

approximation algorithm.

Theorem 3.2. Let Pmax denote the maximum and Pmin denote
the minimum of the four event costs PD

Θ1w
, PD

Θ1a
, PD

Θ2w
, and

PD
Θ2a

. Algorithm ImprovedApprox is a Pmax

Pmin
-approximation

algorithm for the O-Gen-DGS problem.

Proof. From Theorem 3.1, we know that the SimpleApprox
algorithm is a Pmax

Pmin
-approximation algorithm for the O-

Gen-DGS problem irrespective of which optimal DTL rec-
onciliation is computed by the algorithm at the gene-species
level. It therefore suffices to prove that if the same opti-
mal gene-species reconciliation is used by ImprovedApprox,
then the domain-gene reconciliation cost for ImprovedApprox
cannot be greater than the domain-gene reconciliation cost
for SimpleApprox. Accordingly, let αGS denote an optimal
gene-species reconciliation computed during a correspond-
ing run of the SimpleApprox algorithm, let cGS denote the
reconciliation cost of αGS , and let cDG denote the domain-
gene reconciliation cost. Thus, the total reconciliation cost of
this Gen-DGS reconciliation computed using SimpleApprox
is c = cDG + cGS .

Now, suppose that our run of the ImprovedApprox al-
gorithm uses the same gene-species reconciliation αGS ,
and let c′DG denote the cost of the resulting domain-gene
reconciliation. Thus, the total reconciliation cost of the
Gen-DGS reconciliation computed using ImprovedApprox is
c′ = c′DG + cGS .

Since the domain-gene DTL reconciliation computed by
the SimpleApprox algorithm must be a valid candidate so-
lution under modified-DTL reconciliation as well, the cost
of an optimal modified-DTL reconciliation computed by
ImprovedApprox at the domain-gene level must have recon-
ciliation cost no greater than that of the domain-gene DTL-
reconciliation computed by SimpleApprox. Thus, c′DG ≤ cDG ,
which immediately implies that c′ ≤ c.

4 EXPERIMENTAL EVALUATION

We used simulated data to assess the accuracies of the
two approximation algorithms and compare against the
two most relevant previous approaches, SEADOG, which
implements a heuristic for estimating optimal DGS rec-
onciliations [19], and Notung-DM, which implements the
domain event inference approach of Stolzer et al. [28].
We also applied our algorithms to a large real dataset of
11 cyanobacterial species to demonstrate their impact in
practice and further compare against Notung-DM.
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4.1 Results on Simulated Data

Dataset description. We used SaGePhy [17] to simulate 100
sets of species tees, gene trees, and domain trees. We first
simulated 100 species trees each with exactly 100 leaves
(taxa) and height 1, using a birth-death process. For each
species tree, we then simulated 3 gene trees under the
probabilistic duplication-transfer-loss model implemented
in SaGePhy. Following previous literature, e.g. [5], we used
(gene) duplication, transfer, and loss rates of 0.3, 0.6, and
0.6, respectively, resulting in gene trees that had an average
of 101.91 leaves, 6.03 gene duplications, 12.32 gene transfers,
and 18.64 gene losses, on average. We then used each species
tree and its three gene trees to simulate the evolution of a
domain tree in the three gene trees under a duplication-
transfer-loss based domain evolution model [17] that allows
for intra-species and inter-species, as well as intra-gene-
family and inter-gene-family, domain-transfer. As before, we
used (domain) duplication, transfer, and loss rates of 0.3, 0.6,
and 0.6, respectively, resulting in domain trees that had an
average of 129.04 leaves, 5.69 domain duplications, 9.8 do-
main transfers, and 16.06 domain losses. Among the domain
transfers, an average of 7.9 were across-gene-family trans-
fers and 1.9 were within-gene-family transfers. We used
these 100 sets of domain, gene, and species trees to evaluate
the relative accuracies of SimpleApprox, ImprovedApprox, and
SEADOG in inferring the evolutionary histories of domain
families. (A separate simulated dataset had to be used for
comparison against Notung-DM, as discussed later.) Specif-
ically, we evaluated the ability of these algorithms/methods
to correctly infer domain tree mappings as well as infer the
correct event type for each internal domain tree node.

All methods were executed on this simulated dataset
with the same event costs, based on previous literature [5],
[11], [19]: PG

∆ = 2, PG
Θ = 3, PG

loss = 1, PD
∆ = 2, PD

Θ1w
=

3, PD
Θ1a

= 4, PD
Θ2w

= 4, PD
Θ2a

= 5, PD
loss = 1.

Comparison of SimpleApprox and ImprovedApprox. We
first compared the relative accuracies of SimpleApprox and
ImprovedApprox at inferring domain-level evolutionary his-
tories. These results are shown in Table 1. As the table
shows, the overall event inference accuracy (i.e., correct
labeling of each internal node of the domain tree as either
co-divergence, domain-duplication, or domain-transfer) is
almost the same for both algorithms, at 99.67% for Sim-
pleApprox and 99.71% for ImprovedApprox. However, Im-
provedApprox shows significantly higher accuracy at distin-
guishing between the four types of domain-transfer events.
For example, for within-gene-family intra-species domain-
transfers, the event inference accuracy for SimpleApprox and
ImprovedApprox are 81.48% and 88.89%, respectively. Results
on mapping accuracy of the two algorithms show similar
trends, with both methods showing near-perfect overall
mapping accuracy and roughly 90% mapping accuracy for
domain-transfers, but ImprovedApprox showing higher map-
ping accuracies for three out of the four types of domain-
transfer events. Thus, while both algorithms show high
event inference and mapping accuracies, ImprovedApprox
consistently shows greater accuracy than SimpleApprox.

Running times of SimpleApprox and ImprovedApprox.
Our implementations of SimpleApprox and ImprovedApprox
are highly efficient and scalable. On the above simulated

dataset, our implemenation of SimpleApprox took an average
of 0.17 seconds per domain tree (i.e., to reconcile one domain
tree, three gene trees, and one species tree). For the Im-
provedApprox algorithm this average time increased slightly
to 0.21 seconds. These runs were executed on a commodity
laptop computer with a 2.8 GHz Intel i7 processor and 12
GB of RAM, using a single core.

Comparison with SEADOG. We applied SEADOG, which
estimates optimal DGS reconciliations, to the above simu-
lated dataset and again evaluated its ability to accurately
infer domain-level evolutionary histories. These results are
also shown in Table 1. As the table shows, both event
inference and mapping accuracies are significantly lower for
SEADOG than for SimpleApprox and ImprovedApprox. This is
not surprising since SEADOG does not model gene-transfer
or inter-species domain-transfer, both of which are present
in the simulated dataset. In particular, the event and map-
ping accuracies for domain-transfer events are only 11.63%
and 36.05%, respectively. This demonstrates the inapplica-
bility of SEADOG, and of DGS reconciliation in general, in
the presence of inter-species horizontal transfer. It is worth
noting that while the overall event and mapping accuracies
(for all internal nodes) for SEADOG are significantly lower
than those for SimpleApprox and ImprovedApprox, at 90.76%
and 94.98%, respectively, they are still quite high. This is
because most of the internal nodes in the domain trees
are co-divergence events, which, as these results suggest,
SEADOG is able to identify and map with high accuracy
despite the presence of inter-species domain transfer.

Comparison with Notung-DM. Notung-DM, which imple-
ments the approach of Stolzer et al. [28] is unable to consider
the evolution of a domain family in more than one gene
tree. Thus, Notung-DM cannot be applied to our previously
described simulated dataset. We therefore created a new,
restricted simulated dataset in which only one gene tree was
simulated per species tree and the domain tree was made
to evolve only within this single gene tree (and otherwise
using similar simulation parameters as before). We applied
SimpleApprox, ImprovedApprox, and Notung-DM to the 100
domain, gene, and species trees in this restricted dataset
and, as before, measured the domain event inference and
domain mapping accuracies for these methods. Surprisingly,
we found that Notung-DM could only be successfully ap-
plied to 47 out of the 100 sets of trees. For 48 of the 100 sets
of trees, Notung-DM failed to compute either the domain-
gene reconciliation or gene-species reconciliation (or both)
using DTL reconciliation, resorting to using the Duplication-
Loss model instead. This happens because Notung-DM uses
a slightly different formulation of DTL reconciliation that
requires temporal consistency of inferred transfer events.
This makes the problem of computing optimal DTL rec-
onciliations more challenging and Notung-DM can fail to
find any temporally consistent solution for the given tree
pair. For the remaining 5 sets of trees, Notung-DM failed to
terminate with an output within one hour and appeared to
crash/freeze.

Table 2 shows the results of our analysis for the 47
sets of trees on which Notung-DM could be executed suc-
cessfully. As the table shows, Notung-DM shows similar
event and mapping accuracy as ImprovedApprox. This is
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TABLE 1
Domain tree event inference and mapping accuracies for SimpleApprox, ImprovedApprox, and SEADOG on the simulated dataset. Accuracies are
averaged over all 100 domain trees and are reported in percentages. They are calculated to be the percentage of internal nodes of the specified

type in the true evolutionary history of the simulated domain tree whose event type or mapping are inferred correctly by the chosen method.

Criteria Event inference accuracy Mapping Accuracy
SimpleApprox ImprovedApprox SEADOG SimpleApprox ImprovedApprox SEADOG

All internal nodes 99.67 99.71 90.76 99.66 99.64 94.98
All domain-transfer events 94.96 96.9 11.63 90.31 91.86 36.05

Within-gene-family intra-species
domain-transfer events 81.48 88.89 81.48 77.78 85.19 40.74

Across-gene-family intra-species
domain-transfer events 87.5 100 100 87.5 100 50

Within-gene-family inter-species
domain-transfer events 92.79 94.59 0 86.49 87.39 38.74

Across-gene-family inter-species
domain-transfer events 99.11 99.11 0 97.32 97.32 31.25

to be expected given the previously discussed similarity
between the ImprovedApprox algorithm and the algorithm
of Stolzer et al. [28]. Note, however, that Notung-DM shows
much lower accuracy in identifying inter-species domain-
transfer events, at 60.83% compared to 88.33% and 89.17%
for SimpleApprox and ImprovedApprox. We found that this
is because Notung-DM sometimes incorrectly labels inter-
species domain-transfer events as intra-species domain-
transfer events.

Overall, these results show that while Notung-DM can
yield results that are almost as accurate as those of Im-
provedApprox, its applicability is severely limited both by its
inability to be applied to domain families found in multiple
gene families and by its inability to use DTL reconcilia-
tion for either domain-gene or gene-species reconciliation
(i.e., inability to account for gene-transfer or inter-species
domain-transfer or both) in many cases.

4.2 Results on Real Data

Dataset assembly and description. We further evaluated
the performance and applicability of SimpleApprox, im-
provedApprox, and Notung-DM on domain and gene fam-
ilies from 11 cyanobacterial species [37] (Supplementary
Table S1). We used Cyanobase [15] to identify all annotated
genes in these 11 genomes. Out of the total of 42,999 genes
identified, 41,651 genes could be assigned a Uniprot ID [10].
We used these Uniprot IDs to query Pfam [6] and identify
annotated domains within each gene. Out of the 41,651
genes with Uniprot IDs, 31,138 had at least one annotated
domain. In total, we identified 50,280 domains belonging
to 3413 Pfam domain families in these 31,138 genes. On
average, each gene contained 1.61 domain sequences and
each domain family consisted of 14.73 domain sequences.
Next, we used eggNOG-mapper v2 [9] to cluster the 41,651
gene sequences into gene families. We could assign 38,654
gene sequences to a gene family using eggNOG-mapper v2
and so we removed the other 2,997 gene sequences. After
removing the domains from these 2,997 gene sequence, we
were left with a total of 49,486 domain sequences from 3,386
domain families. Related details appear in Supplementary
Table S1.

To perform more meaningful analysis, we pruned out all
domain families that has fewer than 4 domain sequences
or more than 500 domain sequences. After this pruning

step, we also filtered out any gene families that no longer
contained any of the remaining domain families. This re-
sulted in our final set of 2587 gene families and 2347 domain
families. On average, each domain family consisted of 18.83
domain sequences and each gene family consisted of 12.56
gene sequences. We observed that, out of the 2347 domain
families, 1367 were found in (i.e., mapped to) only one gene
family and the remaining 980 were found in more than one
gene family. On average, each domain family was found
in 2.1 gene families. Figure 2 shows the distribution of
the number of gene families represented in each domain
family. We aligned the gene family and domain family
amino-acid sequences using MUSCLE [13] and constructed
maximum likelihood domain trees and gene trees using
RAxML [26] under the JTT substitution model with gamma-
distributed rates and thorough search parameters. We used
MAD rooting [31] to root all domain trees and all gene trees
with at least four leaves (i.e., all gene trees reconstructed
by RAxML). While gene trees with only one or two leaves
are trivially rooted, the 125 gene trees with exactly three
leaves were rooted using the reconciliation-based OptRoot
approach [4]. (We did not use MAD rooting for gene trees
with three leaves because such gene trees could not be “esti-
mated” using RAxML and therefore did not have associated
branch lengths.) Both MAD rooting and OptRoot have been
shown to be effective at rooting microbial gene families [33].
As our species tree, we used the tree reported in [37].
Experimental setup. We used this real dataset to (i) eval-
uate the applicability of Notung-DM on real data, (ii)
compare differences between the reconciliations inferred
using SimpleApprox, improvedApprox, and Notung-DM, and
(3) shed light on the relative prevalence of intra-species vs
inter-species and within-gene-family vs across-gene-family
domain-transfers on this dataset. Recall that Notung-DM
can only be applied to domain trees associated with a single
gene tree. Thus, we separately analyzed the 1367 domain
trees found in only one gene family and the 980 domain
trees found in more than one gene family. We refer to
these two separate datasets as the uni-gene and multi-gene
datasets, respectively. Furthermore, since Notung-DM only
offers a graphical interface, making it difficult to automate
the analysis, we randomly sampled 100 domain trees from
the uni-gene dataset for the uni-gene dataset analysis.

All methods were executed using the same event costs
as for the simulated datasets: PG

∆ = 2, PG
Θ = 3, PG

loss =
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TABLE 2
Domain tree event inference and mapping accuracies for SimpleApprox, ImprovedApprox, and Notung-DM on the restricted simulated dataset.

Results are shown only for the 47 sets of trees, out of 100, on which Notung-DM could be executed successfully. Accuracies are averaged over the
47 domain trees and are reported in percentages. They are calculated to be the percentage of internal nodes of the specified type in the true

evolutionary history of the simulated domain tree whose event type or mapping are inferred correctly by the chosen method.

Criteria Event inference accuracy Mapping Accuracy
SimpleApprox ImprovedApprox Notung-DM SimpleApprox ImprovedApprox Notung-DM

All internal nodes 98.48 98.78 96.55 97.92 98.29 97.31
All domain-transfer events 91.15 91.67 91.15 78.13 82.29 79.69

Within-gene-family intra-species
domain-transfer events 80.56 88.89 88.89 86.11 90.28 81.94

Within-gene-family inter-species
domain-transfer events 88.33 89.17 60.83 73.33 77.5 78.33

0 5 10 15 20 25 30 35
Number of gene families mapped

100

101

102

103

Nu
m

be
r o

f d
om

ai
n 

fa
m

ilie
s

Fig. 2. Distribution of the number of gene families represented in
each of the 2347 domain families.

1, PD
∆ = 2, PD

Θ1w
= 3, PD

Θ1a
= 4, PD

Θ2w
= 4, PD

Θ2a
=

5, PD
loss = 1.

Comparison with Notung-DM. Out of the 100 randomly
sampled sets of domain, gene, and species trees in the uni-
gene dataset, we found that Notung-DM could only be
successfully applied to 40. For 57 sets of trees, Notung-DM
failed to compute either the domain-gene reconciliation or
gene-species reconciliation, or both, using DTL reconcilia-
tion, resorting to using the Duplication-Loss model instead.
For the remaining 3 sets of trees, Notung-DM appeared to
crash/freeze and failed to terminate with an output within
one hour. These results are consistent with what was pre-
viously observed on the simulated dataset, where Notung-
DM could be successfully applied to only 47% of the input
tree sets. In contrast, both SimpleApprox and ImprovedApprox
could be successfully applied to all 100 sets of trees and
required less than a second of running time per domain
tree. On the 40 sets of trees on which Notung-DM could be
applied successfully, it yielded reconciliation costs identical
to that of ImprovedApprox for 39 of the 40 sets of trees.

Overall, these results highlight the limited applicability
of Notung-DM in practice. This is both due to Notung-
DM’s inability to handle domain families evolving within
multiple gene trees and due to its high rate of failure on
even uni-gene datasets. For example, on our real dataset
of 2347 domain trees, Notung-DM would be applicable to

only about 550 domain families, or less than 24% of the real
dataset.

Comparison of SimpleApprox and ImprovedApprox. On
the uni-gene dataset, we found that SimpleApprox and Im-
provedApprox computed Gen-DGS reconciliations with the
same reconciliation costs on 93 of the 100 tree sets. On
the 7 tree sets where there was a difference in reconcili-
ation costs, SimpleApprox showed a 3.48% higher cost on
average. We observed a significantly greater difference in
performance on the multi-gene dataset, where we found
that SimpleApprox and ImprovedApprox computed Gen-DGS
reconciliations with the same reconciliation costs on only
607 (or 61.9%) of the 980 tree sets in that dataset. On the tree
sets with different reconciliation costs, SimpleApprox showed
a 2.97% higher cost on average.

We also compared the overall similarity between
domain-gene reconciliations computed by SimpleApprox and
ImprovedApprox. On the uni-gene dataset, we found that,
on average, 80.72% of the internal nodes in a domain
tree were mapped to the same gene tree node under both
reconciliations. On the multi-gene dataset, an average of
72.05% of the internal nodes in each domain tree mapped
to the same gene tree node under both reconciliations.

Overall, these results show that Gen-DGS reconciliations
computed by SimpleApprox and ImprovedApprox, though
similar, can have significant differences, especially when
the domain family being analyzed evolves within multiple
gene families. When coupled with results on simulated
data, this suggests that ImprovedApprox should yield more
accurate Gen-DGS reconciliations than SimpleApprox on real
biological datasets.

Relative frequencies of different domain transfer types.
We analyzed the Gen-DGS reconciliations computed by
ImprovedApprox on the multi-gene dataset to gain insight
into the relative frequencies of intra-species versus inter-
species and within-gene-family versus across-gene-family
domain-transfers. We found that intra-species domain-
transfers comprised about 31.6% of all domain-transfers,
with inter-species domain-transfers accounting for the re-
maining 68.4%. For within-gene-family and across-gene-
family domain-transfers, these percentages were 76.5% and
24.5%, respectively. Over half of the inferred domain-
transfer events, at 52.8%, were within-gene-family inter-
species domain-transfers, while only 7.8% were across-gene-
family intra-species domain-transfers. Note that these re-
sults are likely to have been affected by various confounding
factors, such as errors in the domain and gene trees, and
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should therefore be interpreted with caution. Still, this anal-
ysis demonstrates the potential of Gen-DGS reconciliation
and of our new algorithms to shed light on fundamental
questions related to the evolution of domain families in
microbes.

5 DISCUSSION

In this work, we extended the DGS reconciliation frame-
work to include gene transfer events and inter-species do-
main transfer events, formulating the Generalised DGS rec-
onciliation problem. We showed that a fast, relatively simple
algorithm based on separately reconciling the domain tree
with the gene trees and the gene trees with the species tree
is an approximation algorithm for the corresponding opti-
mization problem. We also provided an improved approx-
imation algorithm with the same approximation ratio but
better empirical performance. Experimental analysis using
simulated and real microbial datasets shows that both algo-
rithms perform well in practice and significantly outperform
the two existing approaches, SEADOG and Notung-DM.
Our analysis of the real dataset also sheds new light on
the relative prevalence of intra-species versus inter-species
and within-gene-family versus across-gene-family domain-
transfers.

It is worth noting that the new approximation algo-
rithms only work well in the microbial setting, i.e., when
inter-species transfer costs are low. Thus, even though the
Gen-DGS reconciliation generalises DGS reconciliation, our
current algorithms for the Gen-DGS reconciliation problem
should not be used for the DGS reconciliation problem.
Thus, the two algorithms, SimpleApprox and ImprovedAp-
prox, are not good substitutes for SEADOG when analyzing
domain families and gene families from multi-cellular eu-
karyotes. Going forward, it would be worthwhile to develop
new algorithms for Gen-DGS reconciliation, based on co-
optimizing domain-gene and gene-species reconciliations,
that could work well in both the microbial (high rate of hor-
izontal transfer) and non-microbial (low rate of horizontal
transfer) settings.

A limitation of the current Gen-DGS reconciliation
framework is that it is only defined for single domain
families, i.e., it only reconciles one domain tree at a time.
Since multiple domain families often co-evolve within gene
families, it is desirable to simultaneously reconcile all co-
occuring domain families, the entire collection of gene
families in which one or more of these domain families
are present, and the species tree. This multi-domain multi-
gene reconciliation problem has been previously studied in
the context of the DGS reconciliation framework [20] and
it would be useful to define a similar extension for Gen-
DGS reconciliation. The resulting extended framework will
also require new algorithm development since our proposed
algorithms for Gen-DGS reconciliation are unlikely to work
well for the extended problem.

The Gen-DGS reconciliation framework can be leveraged
to potentially improve the accuracy of domain trees and
gene trees and this application is worth exploring further.
While gene tree construction has been shown to be rela-
tively robust to small-scale subgene recombination (such as
through domain-transfer) [36], it can be greatly affected by

larger-scale subgene level events. Likewise, domain trees
can be difficult to estimate accurately due to their short
sequence lengths. By co-estimating gene trees and domain
trees and assessing their “fit” with each other and with the
species tree under a Gen-DGS framework, the reconstruc-
tion accuracy of both types of trees could be improved.

The Gen-DGS reconciliation framework and our new
algorithms may also be applicable in other contexts, such
as to host-symbiont-gene reconciliation [22] or other kinds
of reconciliation problems [21], and such applications are
worth exploring further.

Finally, it may be useful to develop improved prob-
abilistic generative models and inference approaches for
Gen-DGS reconciliation. The recently published approach of
Menet et al. [22], developed independently in parallel with
the current work, introduces such a probabilistic frame-
work for host-symbiont-gene phylogenetic reconciliation.
This framework is also applicable to domain-gene-species
reconciliation, with the host tree serving as the species tree,
symbiont trees serving as gene trees, and gene trees serving
as domain trees, and the underlying reconciliation model
is almost identical to Gen-DGS reconciliation. Probabilistic
inference of reconciliations, though less scalable, has the
potential to be more accurate than parsimony-based infer-
ence, especially when the underlying probabilistic gener-
ative model sufficiently resembles the actual evolutionary
process. It would be informative to systematically compare
the accuracies of our parsimony based approach and the
probabilistic approach of Menet et al. [22] under different
evolutionary conditions. More generally, it would likely be
useful to develop more biologically realistic probabilistic
generative models for improved Gen-DGS reconciliation
accuracy on biological datasets.
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SUPPLEMENTARY MATERIAL

TABLE S1
Basic statistics for real dataset. The table shows the numbers of genes, domains, domain families, and genes with at least one domain found

within the 11 chosen cyanobacterial genomes after various annotation and filtering steps. The first filtering step was to filter out genes for which we
could not find a Uniprot ID. The second filtering step (last row of table) was to remove all genes that could not be assigned to a gene family using

eggNOG-mapper v2.

Species Name # Genes # Genes found
in Uniprot # Domains # Domain

families
# Genes with
≥ 1 domain

Nostoc punctiforme ATCC29133 6690 6690 9043 2549 5038
Crocosphaera watsonii WH8501 5958 5958 6693 2073 4570

Synechocystis PCC6803 3661 3212 3827 1823 2515
Trichodesmium erythraeum IMS101 4451 4451 6560 2056 3405

Gloeobacter violaceus PCC7421 4431 4111 4956 1926 3138
Anabaena PCC7120 6135 5843 7076 2324 4246

Thermosynechococcus elongatus BP1 2476 2196 2782 1492 1788
Synechococcus WH8102 2517 2514 2768 1618 1891

Prochlorococcus marinus MIT9313 2850 2846 2542 1529 1735
Prochlorococcus marinus CCMP1375 1882 1882 2033 1359 1407

Prochlorococcus marinus MED4 1948 1948 2000 1339 1405
Total 42999 41651 50280 3413 31138

Total after
EggNOG mapping 38654 38654 49486 3386 30775
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